
Lifted Belief Propagation: Pairwise Marginals and Beyond

Babak Ahmadi and Kristian Kersting and Fabian Hadiji
Knowledge Dicovery Department, Fraunhofer IAIS

53754 Sankt Augustin, Germany
firstname.lastname@iais.fraunhofer.de

Abstract

Lifted belief propagation (LBP) can be extremely fast at computing approximate marginal
probability distributions over single variables and neighboring ones in the underlying
graphical model. It does, however, not prescribe a way to compute joint distributions
over pairs, triples or k-tuples of distant random variables. In this paper, we present an
algorithm, called conditioned LBP, for approximating these distributions. Essentially, we
select variables one at a time for conditioning, running lifted belief propagation after
each selection. This naive solution, however, recomputes the lifted network in each step
from scratch, therefore often canceling the benefits of lifted inference. We show how to
avoid this by efficiently computing the lifted network for each conditioning directly from
the one already known for the single node marginals. Our experimental results validate
that significant efficiency gains are possible and illustrate the potential for second-order
parameter estimation of Markov logic networks.

1 Introduction

There has been much recent interest in meth-
ods for performing lifted probabilistic inference,
handling whole sets of indistinguishable objects
together, see e.g. (Milch et al., 2008; Sen et
al., 2009) and references in there. Most of
these lifted inference approaches are extremely
complex, so far do not easily scale to realis-
tic domains and hence have only been applied
to rather small artificial problems. A remark-
able exception are lifted versions of belief prop-
agation (Singla and Domingos, 2008; Kersting
et al., 2009). They grouped together random
variables that have identical computation trees
but now run a modified belief propagation (BP)
on the resulting lifted, i.e., clustered network.
Being instances of BP, they can be extremely
fast at computing approximate marginal prob-
ability distributions over single variable nodes
and neighboring ones in the underlying graph-
ical model. Above all, they naturally scale to
realistic domain sizes. Despite their success,
however, lifted BP approaches do not provide a
prescription to compute joint probabilities over

pairs of non-neighboring variables in the graph.
When the underlying graphical model is a tree,
there is a single chain connecting any two nodes,
and dynamic programming techniques might be
developed for efficiently integrating out the in-
ternal variables. When cycles exist, however, it
is not clear what approximate procedure is ap-
propriate. The situation is even more frustrat-
ing when computing marginals over triples or
k-tuples of distant nodes. As for the non-lifted
case, sophisticated exact lifted inference algo-
rithms are only tractable on rather small mod-
els and do not scale to realistic domain sizes. It
is precisely this problem that we are addressing
in this paper, that is we are interested in ap-
proximate lifted inference algorithms based on
the conditioning idea that scale to realistic do-
main sizes. Specifically, we present conditioned
LBP (CLBP), a scalable lifted inference algo-
rithm for approximate inference based on con-
ditioning. Essentially, we select variables one
at a time for conditioning and run lifted be-
lief propagation after each selection. This naive
solution, however, recomputes the lifted net-
work in each step from scratch, therefore often

canceling the benefits of lifted inference. We
show how to avoid this by efficiently comput-
ing the lifted network for each conditioning di-
rectly from the one already known for the sin-
gle node marginals. There has been some prior
work for related problems. Delcher et al. (1996)
propose a data structure that allows efficient
queries when new evidence is incorporated in
singly connected Bayesian networks and Acar
et al. (2008) present an algorithm to adapt the
model to structural changes using an extension
of Rake-and-Compress Trees. The only lifted
inference approach we are aware of is the work
by Nath and Domingos (2010) that was inde-
pendently developed in parallel. The authors
essentially simulate their lifting procedure for a
set of changed variables, obtaining the adapted
lifted network.

We also consider the problem of determining
the best variable to condition on in each itera-
tion to stay maximally lifted over all iterations
and propose a simple heuristic. Our experimen-
tal evaluation including experiments on second-
order parameter estimation for Markov logic
networks (Richardson and Domingos, 2006)
shows that significant efficiency gains are ob-
tainable compared to naively running (lifted)
BP in each iteration. CLBP may also have fu-
ture applications in more advanced relational
learning tasks such as active learning.

We proceed as follows. We start off by briefly
reviewing LBP. Then, we introduce CLBP,
prove its soundness, and touch upon the prob-
lem of determining the best variable to condi-
tion on at each level of recursion. Before con-
cluding, we present the results of our experi-
mental evaluation.

2 Lifted Belief Propagation

Let X = (X1, X2, . . . , Xn) be a set of n discrete-
valued random variables each having d states,
and let xi represent the possible realizations of
random variable Xi. Graphical models com-
pactly represent a joint distribution over X as
a product of factors (Pearl, 1991), i.e.,

P (X = x) = Z−1
∏

k
fk(xk) .

X
1 X

2 X
3

f
1

f
2

X
1

X
2

f
1

X
2

X
3

f
2

… X
n+1

f
n

X
n

X
n+1

f
n

X
1

X
2

f
1

True True 1.2

True False 1.4

False True 2.0

False False 0.4

X
2

X
3

f
2

True True 1.2

True False 1.4

False True 2.0

False False 0.4

…

X
n

X
n+1

f
n

True True 1.2

True False 1.4

False True 2.0

False False 0.4

Xn Xn+1X1 Xn/2-1

Xn Xn+1X1 X2 Xn/2-1

X2

…
c

cc
Xn Xn+1X1 Xn/2-1X2

cc

Figure 1: (Top) An example for a factor graph
— a chain graph model with n+1 nodes — with
associated potentials. Circles denote variables,
squares denote factors. (Bottom) Supernodes,
indicated by the shades of the original nodes,
produced by repeatedly clamping nodes, indi-
cated by ”c”,on a chain graph model with n+ 1
nodes. Factors have been omitted. The con-
ditioning order is π = {2, 1, 3, 4, . . . , n − 2, n −
1, n + 1, n}. After clamping X2 all subsequent
LBP runs work on the fully grounded network.

Each factor fk is a non-negative function of a
subset of the variables xk, and Z is a normal-
ization constant. If P (X = x) > 0 for all
joint configurations x, the distribution can be
equivalently represented as a log-linear model:
P (X = x) = Z−1 exp [

∑
iwi · gi(x)], where the

features gi(x) are arbitrary functions of (a sub-
set of) the configuration x. Each graphical
model can be represented as a factor graph.
A factor graph, cf. Fig 1 (top), is a bipar-
tite graph that expresses the factorization struc-
ture of the joint distribution. It has a variable
node (denoted as a circle) for each variable Xi,
a factor node (denoted as a square) for each fk,
with an edge connecting variable node i to fac-
tor node k if and only if Xi is an argument of fk.
We assume one factor fi(x) = exp [wi · gi(x)]
per feature gi(x).

An important (#P-complete) inference task
is to compute the conditional probability of vari-
ables given the values of some others, the evi-
dence, by summing out the remaining variables.

The belief propagation (BP) algorithm is an ef-
ficient way to solve this problem that is exact
when the factor graph is a tree, but only ap-
proximate when the factor graph has cycles. Al-
though this loopy BP has no guarantees of con-
vergence or of giving the correct result, in prac-
tice it often does, and can be much more effi-
cient than other methods. BP can be elegantly
described in terms of sending messages within
a factor graph. The message from a variable X
to a factor f is

µX→f (x) =
∏

h∈nb(X)\{f}
µh→X(x)

where nb(X) is the set of factors X appears in.
The message from a factor to a variable is

µf→X(x) =
∑
¬{X}

f(x)
∏

Y ∈nb(f)\{X}

µY→f (y)


where nb(f) are the arguments of f , and the
sum is over all of these except X, denoted as
¬{X}. The messages are usually initialized to
1, and the unnormalized belief of each variable
Xi can be computed from the equation

bi(xi) =
∏

f∈nb(Xi)
µf→Xi

(xi) .

Evidence is incorporated by setting f(x) = 0 for
states x that are incompatible with it. Different
schedules may be used for message-passing.

Although already quite efficient, many graph-
ical models produce factor graphs with a lot of
symmetries not reflected in the graphical struc-
ture. Consider the factor graph in Fig. 1(top).
The associated potentials are identical. Lifted
BP (LBP) can make use of this fact. It essen-
tially performs two steps: Given a factor graph
G, it first computes a compressed factor graph
G and then runs a modified BP on G. We use
fraktur letters such as G, X, and f to denote the
lifted, i.e., compressed graphs, nodes, and fac-
tors. For the present paper, only the first step
is important, which we will now briefly review.

Step 1 of LBP — Lifting by Color-
Passing (CP): Let G be a given factor graph
with variable and factor nodes. Initially, all
variable nodes fall into d + 1 groups (one or
more of these may be empty) — known states
s1, . . . , sd, and unknown — represented by col-
ors. All factor nodes with the same associated

potentials also fall into one group represented
by a shade. Now, each variable node sends a
message to its neighboring factor nodes saying
“I am of color C”. A factor node sorts the in-
coming colors into a vector according to the or-
der the variables appear in its arguments. The
last entry of the vector is the factor node’s own
color. This color signature is sent back to the
neighboring variables nodes, essentially saying
“You have communicated with these kinds of
nodes”. The variable nodes stack the incoming
signatures together and, hence, form unique sig-
natures of their one-step message history. Vari-
able nodes with the same stacked signatures are
grouped together, and a new color is assigned to
each group. The factors are grouped in a similar
fashion based on the incoming color signatures
of neighboring nodes. This CP process is iter-
ated until no new colors are created anymore.
As the effect of the evidence propagates through
the factor graph, more groups are created. The
final lifted graph G is constructed by grouping
nodes (factors) with the same color (signatures)
into supernodes (superfactors). Supernodes (su-
perfactors) are sets of nodes (factors) that send
and receive the same messages at each step of
carrying out BP on G and form a partition of
the nodes in G. On this lifted network, LBP
runs an efficient modified BP (MBP). We refer
to (Singla and Domingos, 2008; Kersting et al.,
2009) for details.

3 Lifted Conditioning
We are often faced with the problem of repeat-
edly answering slightly modified queries on the
same network. Consider e.g. computing a joint
distribution P (X1, X2, . . . , Xk) using LBP. A
simple method is the following conditioning pro-
cedure that we call conditioned LBP (CLBP).
Let π define a conditioning order on the nodes,
i.e., a permutation on the set {1, 2, . . . , k} and
its i-th element be denoted as π(i). The sim-
plest one is π(i) = i. Now, we select variables
one at a time for conditioning, running LBP
after each selection, and combine the resulting
marginals. More precisely,

1. Run LBP to compute the prior distribution
P (Xπ(1)).

2. Clamp Xπ(1) to a specific state xπ(1). Run
LBP to compute the conditional distribu-
tion P (Xπ(2)|xπ(1)).

3. Do this for all states of Xπ(1) to
obtain all conditional distributions
P (Xπ(2)|Xπ(1)). The joint distri-
bution is now P (Xπ(2), Xπ(1)) =
P (Xπ(2)|Xπ(1)) · P (Xπ(1)).

By iterating steps 2) and 3) and
employing the chain rule we have
P (X1, . . . , Xk) = P (Xπ(1), . . . , Xπ(k)) =∏k
i=1 P (Xπ(i)|Xπ(i−1), . . . , Xπ(1)) . CLBP is

simple and even exact for tree-structured
models. Indeed, it is common to apply (L)BP
to graphs with cycles as well. In this case
the beliefs will in general not equal the true
marginals, but often provide good approxi-
mations in practice. Moreover, Welling and
Teh (2003) report that conditioning performs
surprisingly well in terms of accuracy for
estimating the covariance1. In the lifted case,
however, the naive solution of repeatedly
calling LBP may perform poorly in terms of
running time. We are repeatedly answering
slightly modified queries on the same graph.
Because LBP generally lacks the opportunity
of adaptively changing the lifted graph and
using the updated lifted graph for efficient
inference, it is doomed to lift the original
model in each iteration again from scratch.
Each CP run scales O(n · m) where n is the
number of nodes and m is the length of the
longest path without loop. Hence, CLBP
essentially spends O(k · n · m) time just on
lifting. Moreover, in contrast to the proposi-
tional case, the conditioning order has an effect
on the sizes of the lifted networks produced
and, hence, the running time of MBP. It may
even cancel out the benefit of lifted inference.
Reconsider our chain example2 from Fig. 1.
Fig. 1(bottom) sketches the lifted networks

1The symmetrized estimate of the covariance matrix
is typically not positive semi-definite and marginals com-
puted from the joint distributions are often inconsistent
with each other.

2When the graph is a chain or a tree there is a sin-
gle chain connecting any two nodes and LBP together
with dynamic programming can be used to efficiently

produced over time when using the conditioning
order π = {2, 1, 3, 4, . . . , n − 2, n − 1, n + 1, n}.
As one can see, clamping X2 dooms all sub-
sequent iterations to run MBP on the fully
grounded network, canceling the benefits
of lifted inference. In contrast, the order
π = {1, n+ 1, 2, n, . . . , n/2− 1} produces lifted
and fully grounded networks alternatingly, the
best we can achieve for chain models. We now
address both issues.

Shortest-Paths Lifting: Consider the sit-
uation depicted in Fig. 2. Given the network
in (A) and the prior lifted network, i.e., the
lifted network when no evidence has been set
(B), we want to compute P (X|x3) as shown in
(C). To do so, it is useful to describe BP in
terms of its computation tree (CT), see e.g. (Ih-
ler et al., 2005). The CT is the unrolling of
the (loopy) graph structure where each level
i corresponds to the i-th iteration of message
passing. Similarly we can view CP, i.e., the
lifting procedure as a colored computation tree
(CCT). More precisely, one considers for every
node X the computation tree rooted in X but
now each node in the tree is colored according
to the nodes’ initial colors, cf. Fig. 2(bottom).
Each CCT encodes the root nodes’ local com-
munication patterns that show all the colored
paths along which node X communicates in the
network. Consequently, CP groups nodes with
respect to their CCTs: nodes having the same
set of rooted paths of colors (node and factor
names neglected) are clustered together. For
instance, Fig. 2(A) shows the CCTs for X3 and
X5. Because their set of paths are different, X3

and X5 are clustered into different supernodes
as shown in Fig. 2(B). The prior lifted network
can be encoded as the vector l = (0, 0, 1, 1, 0, 0)
of node colors. Now, when we clamp a node,
say X3, to a value x3, we change the communi-
cation pattern of every node having a path to
X. Specifically, we change X3’s (and only X3’s)
color in all CCTs X3 is involved. This is illus-
trated in Fig. 2(B). For the prior lifted network,
the dark and light nodes in Fig. 2(B) exhibit the

integrate out the internal variables. When cycles exist,
however, it is unclear what approximate procedure is ap-
propriate.

X5

X4

X6

X2X1

X3

X1

X3

X2

X5

X6

X4

X3

X4

X1

X6

X5

X2

(B) Lifted model - no evidence

Examples of colored computation trees

(A) Originial factor graph

X1

X3

X2

X5

X6

X4

(C) Lifted model - evidence

X1

X3

X2

X5

X6

X4

X5

X4

X6

X2X1

X3

X5

X4

X6

X2X1

X3
c

X1

X3

X2

X6X5

X4

c X3

X4

c

(D) Shortest Path Distances

X1 X2 X3 X4 X6 X6

X1 0 2 1 2 3 3
X2 2 0 1 2 3 3
X3 1 1 0 1 2 2
X4 2 2 1 0 1 1
X5 3 3 2 1 0 1
X6 3 3 2 1 1 0

X5
X6

X2X1

Figure 2: (A): Original factor graph. (B): Prior lifted network, i.e., lifted factor graph with no
evidence. (C): Lifted factor graph when X3 is set to some evidence. Factor graphs are shown (top)
with corresponding colored computation trees (bottom). For the sake of simplicity, we assume
identical factors (omitted here). Ovals denote variables/nodes. The shades in (B) and (C) encode
the supernodes. (D): Shortest-path distances of the nodes. The i-th row will be denoted di.

same communication pattern in the network.
Consequently, X3 appears at the same positions
in all corresponding CCTs. When we now in-
corporate evidence on node X3, we change its
color in all CCTs as indicated by the ”c” in
Figs. 2(B) and (C). This effects nodes X1 and
X2 differently than X4 respectively X5 and X6

for two reasons: (1) they have different com-
munication patterns as they belong to different
supernodes in the prior network; more impor-
tantly, (2) they have different paths connecting
them to X3 in their CCTs. The shortest path is
the shortest sequence of factor colors connect-
ing two nodes. Since we are not interested in
the paths but whether the paths are identical
or not, these sets might as well be represented
as colors. Note that in Fig. 2 we assume iden-
tical factors for simplicity. Thus in this case
path colors reduce to distances. In the general
case, however, we compare the paths, i.e. the
sequence of factor colors.
We only have to consider the vector d3 of
shortest-paths distances to X3, cf. Fig. 2(D),
and refine the initial supernodes correspond-
ingly. Recall that the prior lifted network can
be encoded as the vector l = (0, 0, 1, 1, 0, 0)
of node colors. This is equivalent to (1)

l ⊕ d3, the element-wise concatenation of
two vectors, and (2) viewing each resulting
number as a new color. (0, 0, 1, 1, 0, 0) ⊕
(1, 1, 0, 1, 2, 2) =(1) (01, 01, 10, 11, 02, 02) =(2)

(0, 0, 1, 2, 3, 3), the lifted network for P (X|x3)
as shown in Fig. 2(C). Thus, we can directly
update the prior lifted network in linear time
without taking the detour through running CP
on the ground network. Now, let us compute
the lifted network for P (X|x4, x3). Essentially,
we proceed as before: compute l ⊕ (d3 ⊕ d4).
However, the resulting network might be sub-
optimal. It assumes x3 6= x4 and, hence, X3

and X4 cannot be in the same supernode. For
x4 = x3, they could be placed in the same
supernode, if they are in the same supernode
in the prior network. This can be checked by
d3�d4, the element-wise sort of two vectors. In
our case, this yields l ⊕ (d3 � d4) = l ⊕ l = l:
the prior lifted network. In general, we compute
l ⊕ (

⊕
s(
⊕

v ds,v)) where ds,v =
⊙

i∈s:xi=v di , s
and v are the supernodes and the truth value re-
spectively. For an arbitrary network, however,
the shortest paths might be identical although
the nodes have to be split, i.e. they differ in
a longer path, or in other words, the shortest
paths of other nodes to the evidence node are

different. Consequently we iteratively apply the
shortest paths lifting. Let SNS denote the su-
pernodes given the set S as evidence. By ap-
plying the shortest path procedure we compute
SN{X1} from SN∅. This step might cause ini-
tial supernodes to be split into newly formed
supernodes. To incorporate these changes in
the network structure the shortest paths lifting
procedure has to be iteratively applied. Thus
in the next step we compute SN{X1}∪ΓX1

from
SN{X1}, where ΓX1 denotes the changed su-
pernodes of the previous step. This procedure
is iteratively applied until no new supernodes
are created. This essentially sketches the proof
of the following theorem.

Theorem 1. If the shortest-path colors
among all nodes and the prior lifted network
are given, computing the lifted network for
P (X|Xi, . . . , X1), i > 0, takes O(i ·n · s), where
n is the number of nodes, s is the number of
supernodes. Running MBP produces the same
results as running BP on the original model.

Proof. For a Graph G = (V,E), when we set
new evidence for a node X ∈ V then for all
nodes within the network the color of node
X in the CCTs is changed. If two nodes
Y1, Y2 ∈ V were initially clustered together
(denoted as sn0(Y1) = sn0(Y2)), i.e. they be-
long to the same supernode, they have to be
split if the CCTs differ. Now we have to
consider two cases: If the difference in the
CCTs is in the shortest path connecting X
with Y1 and Y2, respectively, then shortest-
path lifting directly provides the new cluster-
ing. If the coloring along the shortest paths
is identical the nodes’ CCTs might change in
a longer path. Since sn0(Y1) = sn0(Y2) there
exists a mapping between the paths of the
respective CCTs. In particular ∃Z1, Z2, s.t.
sn0(Z1) = sn0(Z2) from a different supernode,
i.e. sn0(Zi) 6= sn0(Yi), and Y1, . . . , Z1, . . . , X︸ ︷︷ ︸

∆1

∈

CCT (Y1), Y1, . . . , Z2, . . . , X︸ ︷︷ ︸
∆2

∈ CCT (Y2) and

∆1 ∈ CCT (Z1) 6= ∆2 ∈ CCT (Z2) are the re-
spective shortest paths for Z1 and Z2. Thus, by
iteratively applying shortest-path lifting as ex-

plained above, the evidence propagates through
and we obtain the new clustering.

On Finding a Conditioning Order:
Clearly, CLBP will be most efficient for esti-
mating the probability of a joint state when it
produces the smallest lifted networks. This calls
for the task of finding the most efficient3 condi-
tioning order. Here, we provide a generically ap-
plicable strategy based on the nodes’ shortest-
path colors to all other nodes. That is, in each
conditioning iteration, we add that node having
the smallest number of unique paths to all other
nodes and, if possible, is a member of a supern-
ode of one of the already clamped nodes. Intu-
itively, we select nodes that are expected to cre-
ate the smallest number of splits of existing su-
pernodes in each iteration. Therefore, we call it
min-split. Although this increases the running
time — each conditioning iteration now has an
additional O(n2) step — our experiments show
that there are important cases such as comput-
ing pairwise joint marginals where the efficiency
gains achievable due to a better lifting can com-
pensate this overhead.

4 Experimental Evaluation

Our intention here is to illustrate the per-
formance of CLBP compared to naively run-
ning LBP and BP. We implemented CLBP and
its variants in Python and using libDAI li-
brary (Mooij, 2009) and evaluated the algo-
rithms on a number of Markov logic networks.

In our first experiment, we compared CLBP
to naively running LBP, i.e. lifting the net-
work each time from scratch, and BP for com-
puting pairwise probabilities. We generated
the ”Friends-and-Smokers” Markov logic net-
work (Singla and Domingos, 2008) with 2, 5,
10, 15, 20, and 25 people, resulting in networks
ranging from 8 to 675 nodes. The shortest-path
lifting clearly pays out in terms of the total mes-
sages sent (including CP and shortest-path mes-

3This question is different from the more common
question of finding highly accurate orders. The latter
question is an active research area already for the ground
case see e.g. (Eaton and Ghahramani, 2009), and is also
related to the difficult question of convergent BP vari-
ants, see e.g. (Mooij et al., 2007).

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500 600

T
o
ta

l
M

e
s
s
a
g
e
s
 (

m
ill

io
n
s
)

Variables

BP
LBP

CLBP

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 7e-05

 8e-05

 9e-05

 0.0001

 0 50 100 150 200 250

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n

Variables

BP

LBP

CLBP

Figure 3: Pairwise Probability Estimates: (Left) Comparison of the total number of messages
sent for BP, Lifted BP and ”min-split” order CLBP for ”Friends-and-Smokers” MLNs (including
clustering messages for LBP and CLBP). (Right) The Standard Deviation of the error compared
to the exact solution computed using the Junction Tree Algorithm.

sages) as shown in Fig. 3 (left). Moreover, the
accuracy estimates are surprisingly good and
confirm Welling and Teh (2003); Fig. 3 (right)
shows the Standard Deviation of the difference
compared to the exact solution computed us-
ing the Junction Tree (JT). The maximal error
we got was below 10−4. Note, however, that
running JT with more than 20 persons was im-
possible due to memory and time restrictions.
In our second experiment we investigated
CLBP for computing joint marginals. For the
”Friends-and-Smokers” MLN with 20 people
we randomly chose 1, 2, . . ., 10 ”cancer” and
”friends” nodes as query nodes. The joint state
was randomly chosen. The results are averaged
over 10 runs. Fig. 4 shows the cumulative num-
ber of messages (including CP messages). ”Min-
split” is indeed better. By chosing the order
following our heuristic the cumulative number
of supernodes and in turn messages is reduced
compared to a random elimination order.

Finally, we learnt paramters for the ”Friends-
and-Smokers” MLN with 10 perople, maxi-
mizing the conditional marginal log-likelihood
(CMLL). Therefore we sampled 5 data cases
from the joint distribution. We compared con-
jugate gradient (CG) optimization using Polak-
Ribiere with Newton conjugate gradient (NCG)
optimization using the covariance matrix of
MLN clauses computed using CLBP. The gra-

dient was computed as described in (Richard-
son and Domingos, 2006) but normalized by
the number of groundings of each clause. The
results summarized in Fig. 5 confirm that in-
formation about dependencies among clauses is
indeed useful: the second order method exhibits
faster convergence.

5 Conclusion

We presented conditioned lifted BP, the first ap-
proach for computing arbitrary joint marginals
using lifted BP. It relates conditioning to com-
puting shortest-paths. Exploiting this link in
order to establish runtime bounds is an inter-
esting avenue for future work. By combining
lifted BP and variable conditioning, it can read-
ily be applied to models of realistic domain
size. As our results show significant efficiency
gains are obtainable, sometimes order of mag-
nitude, compared to naively running (lifted) BP
in each iteration. An interesting avenue for
future work is to apply CLBP within impor-
tant AI tasks such as finding the MAP assign-
ment, sequential forward sampling, and struc-
ture learning. Furthermore, our results suggest
to develop lifted cutset conditioning algorithms,
see e.g. (Bidyuk and Dechter, 2007), and to lift
Eaton and Ghahrmani’s (2009) fast heuristic
for selecting nodes to be clamped to improve
CLBP’s accuracy.

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9 10

M

es
sa

ge
s

(t
ho

us
an

ds
)

Query Variables

BP
random

min-split

Figure 4: Number messages sent for comput-
ing joint marginals of varying size for BP,
”random” and ”min-split” order CLBP.

-320

-300

-280

-260

-240

-220

-200

-180

-160

 0 5 10 15 20 25 30 35 40

C
M

LL

Iteration

CG
NCG

Figure 5: Learning curves for ”Friends-and-
Smokers” MLN. Optimization using clause
covariances shows faster convergence.

Acknowledgements. This work was sup-
ported by the Fraunhofer ATTRACT fellowship
STREAM and by the European Commission
under contract number FP7-248258-First-MM.

References

U. Acar, A. Ihler, R. Mettu, and O. Sumer. 2008.
Adaptive inference on general graphical models.
In Proc. of the Twenty-Fourth Conference Annual
Conference on Uncertainty in Artificial Intelli-
gence (UAI-08), Corvallis, Oregon. AUAI Press.

B. Bidyuk and R. Dechter. 2007. Cutset sampling
for bayesian networks. JAIR, 28.

A. L. Delcher, A. J. Grove, S. Kasif, and J. Pearl.
1996. Logarithmic-time updates and queries in
probabilistic networks. JAIR, 4:37–59.

F. Eaton and Z. Ghahramani. 2009. Choosing a
variable to clamp: Approximate inference using
conditioned belief propagation. In Proc. of the
12th International Conference on Artificial Intel-
ligence and Statistics (AIStats-09).

A.T. Ihler, J.W. Fisher III, and A.S. Willsky. 2005.
Loopy belief propagation: Convergence and ef-
fects of message errors. Journal of Machine
Learning Research, 6:905–936.

K. Kersting, B. Ahmadi, and S. Natarajan. 2009.
Counting belief propagation. In J. Bilmes A. Ng,
editor, Proceedings of the 25th Conference on
Uncertainty in Artificial Intelligence (UAI–09),
Montreal, Canada, June 18–21.

B. Milch, L. Zettlemoyer, K. Kersting, M. Haimes,
and L. Pack Kaelbling. 2008. Lifted Probabilis-
tic Inference with Counting Formulas. In Proc.

of the 23rd AAAI Conf. on Artificial Intelligence
(AAAI-08), July 13-17.

J. Mooij, B. Wemmenhove, H. Kappen, and
T. Rizzo. 2007. Loop corrected belief propa-
gation. In Proc. of the 11th International Con-
ference on Artificial Intelligence and Statistics
(AIStats-09).

Joris M. Mooij. 2009. libDAI 0.2.3: A free/open
source C++ library for Discrete Approximate In-
ference. http://www.libdai.org/.

A. Nath and P. Domingos. 2010. Efficient lifting for
online probabilistic inference. In Proceedings of
the Twenty-Fourth AAAI Conference on Artificial
Intelligence (AAAI-10).

J. Pearl. 1991. Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kauf-
mann, 2. edition.

M. Richardson and P. Domingos. 2006. Markov
Logic Networks. MLJ, 62:107–136.

P. Sen, A. Deshpande, and L. Getoor. 2009.
Bisimulation-based approximate lifted inference.
In J. Bilmes A. Ng, editor, Proc. of the 25th Con-
ference on Uncertainty in Artificial Intelligence
(UAI–09), Montreal, Canada, June 18–21.

P. Singla and P. Domingos. 2008. Lifted First-Order
Belief Propagation. In Proc. of the 23rd AAAI
Conf. on Artificial Intelligence (AAAI-08), pages
1094–1099, July 13-17.

M. Welling and Y.W. Teh. 2003. Linear response
for approximate inference. In Proc. of NIPS-03,
pages 191–199.

