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Abstract— Programming by demonstration is a powerful
method to solve complex, high-dimensional tasks in humanoid
robots, such as reaching and grasping objects. However, a
demonstration (or a set of demonstrations) are performed in
particular scenarios that may be different from the ones faced
by the robot during operation. Both the posture and shape
of the targets, robot kinematics and dynamics constraints,
presence of obstacles and other workspace contingencies often
prevent a direct application of the demonstrated programs
in a run-time scenario. An intelligent agent should be able
to learn the task based on few demonstrations, and then, be
able to generalize and solve it according to features found in
novel situations. In this paper we present a framework and
methodology for addressing this problem and show some results
from implementations on the iCub robot.

I. INTRODUCTION

Achieving dexterous robot grasping is a milestone in
humanoid robots and mobile manipulators. It implies gen-
erating a suitable trajectory in a high dimensional space,
i.e.: the robot configuration space. This trajectory depends
on the task (e.g.: type of grasp); on the environment (e.g.:
obstacles to avoid) and on the hand and object properties
(e.g.: kinodynamic properties and contact points).

Programming by demonstration techniques allow tackling
the first problem: high dimensionality. By recording human
demonstrations of the execution of certain tasks one can
extract motor programs (or motor primitives) that span a
reduced part of the configuration space and can be used
as priors for the generation of robot trajectories. Several
approaches to obtain motor primitives from one or multiple
demonstrations have been proposed in the literature such
as gaussian mixture models [4], attractor dynamics [8] and
fuzzy time clustering [20]. Such approaches represent the
demonstrated trajectories using a low-dimensional set of
parameters that somehow encode the relevant features of
the human skill. By design, the above mentioned motor
primitives can be parameterized by some aspects of the task,
e.g., the position of the target. This provides the ability to
reach for targets once their position is known.

Human demonstrations, however, cannot be directly im-
itated by the robot due to unavoidable kinodynamic dif-
ferences between the human and robot motor systems.
Straightforward approaches represent human trajectories in
cartesian space and command the robot with inverse kine-
matics solutions but this approach presents high sensitivity
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to calibration error and low robustness to disturbances when
close to singularities. Other approaches try to blend cartesian
and operational spaces in order to jointly minimize trajectory
errors in cartesian and operational space [5]. A problem with
such model based approaches is that they require a good
knowledge of the robot kinematics and dynamics which, in
some cases, is hard and expensive to acquire. Techniques
based on reinforcement learning can be employed in these
cases, as they explore the motor space in order to optimize
the motor control laws for the particular robotic system and
tasks at hand [10].

Uncertainty exists not only in the knowledge of the robot
motor system but also (and most often) in the perception of
the external objects to interact with. When the robot needs to
grasp previously unknown objects, uncertainty comes from
two main sources:

• Signal noise: When the robot is confronted with an
unknown environment, the main source of information
is sensor data, like cameras, range finders or tactile
sensors. Sensor data is typically perturbed by random
noise, which has to be considered when planning the
grasp.

• Abstraction: A robot needs to learn robust strategies
to solve the grasping problem in different scenarios in
order to be able to generalize the trajectory to novel
objects or configurations. Nevertheless, this learning
process introduce uncertainty when it is used to realize
a prediction of a previously unseen setup. For example,
we can learn to grasp a cup, but the concept cup is
uncertain because not all the cups has the same colors,
size or weight.

A standard formulation to cope with uncertainty in this
kind of problems is that of Markov Decision Processes
(MDP). This formulation, allows the representation of un-
certainty and also to address reinforcement learning (RL)
problems by assuming a reward or cost signal which is
used to evaluate the optimality of the task. In this paper
we adopt an MDP formulation and present and architecture
for the control of a robotic system incorporating learning
from demonstrations while satisfying task constraints, and
use state-of-the-art inference methods [25] to implement
reaching and grasping movements on the iCub robot able
to deviate from obstacles in the environment.

The paper is organized as follows. In Section II we
introduce our approach in the context of inference methods
over MDP’s. In Section III we explain how learning from
demonstrations can be framed as learning the reward (or cost)
function for an MDP. Then, in Section IV we propose an
architecture to address the planning of reaching and grasping



Fig. 1. A generic Markov Decision Process (MDP).

Fig. 2. A Markov Decision Process with reward on the final state.

actions using the human demonstrations but also taking
into account real-time contingencies. Experimental results in
simulation and on the iCub robot are shown in Section V
and, finally, conclusions and future work are presented in
Section VI.

II. INFERENCE BASED PLANNING AND CONTROL

Novel solutions to MDP and optimal control like problems
are based on statistical inference [28], [6], [7], [29]. An
MDP is composed by random variables defining the states
(st), the actions (at) and the rewards (rt) (see Fig. 1) The
state evolution is determined by a stochastic transition model,
P (st+1|st, at). The actions are generated by a stochastic
policy (or control law) defined as P (at|st; θ), where π is
a set of parameters of the control rule that we want to
optimize. The reward is given to the system at each time
step according to a conditional distribution P (rt|st, at).
The classical approach to solve the MDP is to search for
the parameters θ that maximize the expected (average or
discounted) reward. As explained in [28], assuming that the
reward is only assigned in the end of the trajectory (see Fig.
2), and that rT = 1 is the optimum, then we can rephrase
the optimization problem in terms of maximum likelihood
and solve it with probabilistic inference methods: compute
the parameters θ that maximize the likelihood of P (rT =
1|st, at). This can be solved efficiently by an Expectation
Maximization (EM) algorithm where the E-step computes
the posterior over a0:T and s0:T conditioned in observing
rT = 1. This is similar to “imagining” to receive the reward
and infer the trajectory to achieve that goal using the current
policy. Then, the M-step computes the new policy parameters
to maximize the expected complete log-likelihood of the
computed trajectory conditional distribution. In [28] it is
also shown that, for the unknown time horizon problem,
one can compute the expectation of the accumulated reward
for a trajectory by computing the reward of a mixture of
trajectories with different time horizons, that is, computing
the optimal trajectory is equivalent to finding the most likely
time horizon in the mixture.

The MDP formulation also resembles the problem of
Stochastic Optimal Control (SOC), which replaces the re-
ward function with a quadratic cost based on the robot state
and action. In fact, SOC can be used for efficient robot

Fig. 3. A stochastic optimization problem can be reformulated as an
inference problem by defining target random variables z. The cost values
are mapped to the neg-log probability of z = 1.

planning through trajectory optimization [23], [28], [22].
In [25], the SOC problem is also mapped to an inference
problem (see Fig. 3). More precisely, it is defined a virtual
binary variable z, which has a probability distribution based
on the cost of the trajectory. That is, if we define the
trajectory as a set of states x0:T and actions u0:T , we define
the probability of z = 1 as

p(z = 1|x0:T , u0:T ) = exp(−C(x0:T , u0:T )) (1)

where C(·, ·) is the accumulated cost of the trajectory. Basi-
cally, the probability of z = 1 will be high when the cost is
low. Then, fast (approximate) inference methods on graphical
models are employed to obtain the control sequence that
maximizes the likelihood of z = 1, i.e. minimize the cost.
The advantage of using inference is that we can use the most
suitable techniques for our models and distributions. Once
we have mapped the optimization problem as an inference
problem, we can combine it with other learning problems
that may happen simultaneously.

In [25] the trajectory is generated taking into account
several criteria, including a desired target position, the
obstacles in the environment and the robot kinodynamic
constraints. In this work we also what to include priors from
human demonstrations, i.e. the generated trajectory should
be “human-like”. This will be obtained by several demon-
strations of humans executing a similar task. Most works on
programming by demonstration typically learn a distribution
of behaviors that fits the demonstrated trajectories. That
distribution is conditioned on some features from the scene
and the robot. For example, if we define a set of features
from the object as O and a set of features from the hand as
H, then, we can compute the posterior distribution as

p(x0:T , u0:T |O,H,D) ∝ p(O,H,D|x0:T , u0:T )p(x0:T , u0:T )
(2)

where D are the demonstrated trajectories. The likelihood of
the previous equation can be decomposed as follows:

p(O,H,D|x0:T , u0:T ) = p(D|x0:T , u0:T ,O,H)× (3)
× p(O,H|x0:T , u0:T ) (4)

Therefore, we can take the posterior distribution of the
demonstrated trajectories and use them as a prior distribution
for the trajectory optimization. Thus, instead of using the ML
trajectory, we compute the Maximum a Posteriori (MAP)
trajectory.

Demonstration can be useful to learn more properties of
the grasping problem apart from the prior distribution of



trajectories. For example, while computing the quadratic cost
C(x0:T , u0:T ), we have to consider different aspects of the
optimal trajectory. For example:

• The end effector must reach a certain position and
orientation to perform the grasp. This position will be
computed using a previously learned non-parametric
regression function to detect grasping points in novel
objects [14].

• The robot must avoid obstacles and other objects while
doing the reaching and manipulation.

• The optimal trajectory should be smooth and easy to
follow by the controller, i.e., a PID controller should
be able to perform the trajectory with small gains and
remaining inside the kinodynamic limits [27], [3].

• The trajectory must remain within the robot workspace.

In fact, it is simpler to consider the imitation of the trajectory
as a constraint in the trajectory [4], [9]. Therefore, it can be
included in the cost function as one item more on the list. We
can define the imitation constraint in terms of task variables,
robot variables or environment variables, like objects or
references, just by increasing the state variable to consider
all those elements.

These constraints should be all considered in a single cost
function, that is,

C(x0:T , u0:T ) =
N∑

i=1

θici(x0:T , u0:T ) (5)

where ci(x0:T , u0:T ) is the cost of every task constraint and
θi is the corresponding weight. For example, if we want to
guarantee that the trajectory is collision free, we just need
to set

θcoll � θi ∀i 6= coll (6)

However, other weights might be trickier to set. Some
constraints might have similar importance for the global task,
but changing those weights produce completely different
trajectories. Therefore, having the optimal relative weights
is of paramount importance.

III. INVERSE PLANNING

In the past few years, there has been several works
addressing the problem of Inverse Reinforcement Learning
(IRL) [17], [30], [1] or Inverse Optimal Control (IOC) [23],
[30], which basically study the problem of learning a reward
or cost function1, based on several demonstrations from an
optimal policy or control law.

In all cases, the algorithms assume that the reward function
can be obtained as the weighted sum of a set of features.
Using the linearity property of the expected value, we can
define the expected reward as the linear combination of

1One can easily transform a reward in a cost and vice versa by changing
the sign of the function.

expected values

R(x, u) = E[
N∑

i=0

θiri(x, u)] (7)

=
N∑

i=0

θiE[ri(x, u)] (8)

=
N∑

i=0

θiφi(x, u) (9)

Once we extend the reward to all the trajectory and we
change the sign, equations (5) and (9) are equivalent. Inter-
estingly, there is evidence that humans also understand the
actions and the tasks by mentally processing the problem of
inverse planning [2].

The difficulty of IRL is twofold. First, we may not have
complete demonstrations of the policy or control law. We
just have partial demonstrations or trajectories of a desired
behavior from an initial configuration. This effect is critical
when the policy is stochastic, meaning that the output
(action) from a given state is not deterministic, therefore,
different realizations might have different outcomes. In fact,
even in the deterministic case, it is impossible to explore
all the states and actions. For that reason, Lopes et al. [12]
designed an algorithm that actively searches and queries the
most informative demonstrations and trajectories.

The method of active IRL from Lopes et al. is based on the
Bayesian IRL [18] which tries to find a posterior distribution
on the reward parameters conditioned on the demonstrations
p(R|D). However, this method is very inefficient since it
relies on MCMC sampling of the complete MDP in order to
estimate the posterior distribution. Another interpretations of
the IRL problem are based on the optimization of a similarity
function between the demonstration and the reward function.

R∗ = arg min
R

J(R|D) (10)

Thus, depending on the definition of the dissimilarity func-
tion J(R|D), we have projection algorithms [1], max-margin
planning [19], policy matching2 [15] and maximum entropy
[30]. An extended review on this classification can be found
in [16]. The advantage of these methods is that they are
usually more efficient that the Bayesian IRL. However, the
optimization problem might be tricky and it may require
some tuning depending on the application.

In Section II we have seen how to map an optimization al-
gorithm to an inference problem. Analogously the similarity
optimization problem is naturally addressed using inference
methods. That gives us a complete and uniform framework
for all the learning steps in our architecture.

IV. ARCHITECTURE

In figure 4, we show the interdependencies between the
different modules composing our architecture. The goal is
to generate a reaching and grasping trajectory satisfying

2In fact, this work may have a double interpretation, since the similarity
function resembles a likelihood function. Therefore, it can be interpreted as
the Maximum Likelihood version of the Bayesian IRL [18]



Fig. 4. Diagram of the different modules used to generate an optimal
trajectory based on inference. The output of the system is the trajectory
generated by the Stochastic Optimal Control module. The cost function
is extracted from the task constraints based on the weights learned by
Inverse Reinforcement Learning. Such constraints might include: reaching
a grasping point, perform obstacle avoidance and imitating a trajectory.

several constraints. Not only we desire similarity to the
human motion but also to take into account the robot
kinodynamic aspects and avoid collisions. The weights of
the different constraints (deviations from human trajectory,
collision proximity and robot limit violations) are learned
based on inverse planing (IRL or IOC) performed during
a set of previous demonstrations of a good behavior. We
assume the availability of a diverse enough set of human
demonstrations, not only to compute motor primitives syn-
thesizing the average human skill but also to extract other
important aspects of the human policy.

The Stochastic Optimal Control (SOC) module is a solver
that will compute the trajectory that maximize the joint
criteria: similarity to the human motor primitive, proximity
of the end effector to a desired grasping point configuration,
collision with objects and deviation from robot joint limits.
Internally the SOC module contains a simulator of the
robot kinodynamics and a collision detection engine. This
is used to compute the cost of violating the robot limits and
collisions to objects.

The grasping point module also plays an important role
in the architecture. It is in charge of computing a desired
posture for the hand close to an object selected for grasping.
Classical graping methods assume a good 3D reconstruction
of the object shape to plan the grasp but 3D object recon-
struction is still difficult to achieve with off-the-shelf sensors.
Instead we use a learning scheme to compute the likelihood
of good grasps based on raw pixel neighborhood operations
on the acquired images. This also requires some teaching
period where we learn a regression function from visual
features to configurations of the hand that guarantees high
probability of successful grasping [14]. During execution,
novel objects can be grasped based on the detection of their
visual appearance features.

V. RESULTS

In this section, we provide some preliminary results on
implementing the trajectory optimization using inference on
the iCub platform. Our implementation is based on libSOC,
an open source library based on the work from [25]. The
implementation also includes a simplified simulator, both

for computing the kinodynamic models of the robot for the
inference module and for debugging and testing.

In this work, every model is predefined manually including
the grasping point. The task constraints used are: a) reaching
the grasping point, b) avoid obstacles and self collisions dur-
ing the whole trajectory and c) guarantee that the joint limits
are satisfied. At present, the control module we implemented
for the iCub platform is sensitive to large changes in adjacent
steps of the trajectory. Therefore, the trajectory illustrated in
Figures 5 and 7 is fairly large containing 600 steps and took
about 13.5 seconds to compute on an old PC -Intel Pentium
D with 2 GB RAM-. In Figure 5 we see the simulated iCub
reaching the red ball (target for the end effector), while
avoiding the table (yellow plane). In the starting position,
the hand is placed below the table. Due to the amplitude in
the motion, the iCub is forced to move the torso to be able
to reach the target. This results in a very natural movement
on the real robot (see Figure 7). When the collision criterion
is not considered, the simulated robot collides with the table
(yellow plane) as illustrated in Figure 6.

This design had in mind one goal for the near future.
We want the robot to be able to react in real–time. For
example, the robot should be able to adapt while reaching
for a target when an obstacle is introduced. To achieve this
goal we are working on two related aspects. Firstly, a Time-
of-Flight (TOF) camera sensor will be used to obtain in
real-time potential obstacles introduced in the environment.
Secondly, trajectory can be modified/recomputed in near real
time. Our approach considers the path deformation strategies
extensively used in mobile robotics, such as [11]. Using our
architecture, one can compute small trajectories extremely
fast using [25] (the trajectory illustrated in Figures 5 and 7
when computed for only 40 steps takes only 0.51 seconds on
a old PC.). At the moment, we are implementing a control
module for the iCub which can follow a given trajectory
accurately even if there are large changes in adjacent steps
of the trajectory. Furthermore, we are simultaneously imple-
menting dynamic time warping to reduce/increase the size
of the computed trajectory if necessary.

One of the major limitations of these approaches is the
high dependency on accurate models of the robot and the
environment. In this work, every model is predefined manu-
ally. However, in future work, we are going to use sensor data
to obtain an accurate model from the environment [21] and
the robot [13]. Also, we plan to explore different algorithms
for high-dimensional trajectory optimization which learn a
parametric model based on random exploration [22].

VI. CONCLUSIONS

In this work, we present an architecture for generating
reaching and grasping motions. The architecture includes
different modules to integrate task constraints from human
imitation, sensor driven grasping selection and physical re-
strictions such as, obstacle avoidance and workspace limits.

Using a graphical model like a Bayesian network to model
the coupling of the different variables has several advantages.
The most important one is that the classical optimization
problem is replaced by a Bayesian inference problem [26].



Fig. 5. Trajectory generated to reach the goal (red ball) with the end effector of the left hand. The trajectory is optimized so that the board (yellow plane)
is avoided. Note that the torso is also moved to help the movement.

Fig. 6. Trajectory generated to reach the goal (red ball) with the end effector of the left hand. In this case, obstacle avoidance is not considered, resulting
in a trajectory with collision.

Therefore we can use and combine the different tools for
Bayesian inference that are available for different models and
representations. For example, using Monte Carlo methods
we can combine continuous and discrete variables in the
same framework [6], [7], [29]. Also, fancier models such
as truncated Gaussians are suitable for robot planning with
obstacles [24].

Finally, the probabilistic model also has a relationship with
classical reinforcement learning [28]. Thus, we can apply
a second inference layer to deal with the importance or
the priority of the different task constraints, using inverse
reinforcement learning algorithms [1], [15]. The inverse
reinforcement learning setup allows to generalize classical
apprenticeship learning and imitation learning by adding
an intermediate abstraction level on the Markov decision
process.
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Rüdiger Dillmann. Learning of probabilistic grasping strategies using
programming by demonstration. In IEEE International Conference on
Robotics and Automation, 2010.

[10] J. Kober, E. Oztop, and J. Peters. Reinforcement learning to adjust
robot movements to new situations. In Proc. of Robotics Science and
Systems conference (RSS), 2010.

[11] F. Lamiraux, D. Bonnafous, and O. Lefebvre. Reactive path deforma-
tion for nonholonomic mobile robots. IEEE Transactions on Robotics,
20(6):967–977, 2004.



Fig. 7. The iCub humanoid robot performing the reaching and grasping motions while avoiding the white board. Due to the complexity of the motion,
not only the left arm, but also the torso is moved.

[12] Manuel Lopes, Francisco S. Melo, and Luis Montesano. Active
learning for reward estimation in inverse reinforcement learning. In
European Conference on Machine Learning (ECML/PKDD), Bled,
Slovenia, 2009.

[13] Ruben Martinez-Cantin, Manuel Lopes, and Luis Montesano. Body
schema acquisition through active learning. In IEEE International
Conference on Robotics and Automation, Alaska, USA, 2010.

[14] Luis Montesano and Manuel Lopes. Learning grasping affordances
from local visual descriptors. In IEEE International Conference on
Development and Learning (ICDL), 2009.
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