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Abstract— Segmenting range data into semantic categories field of research, and very good results have been achieved
has become a more and more active field of research in robotics recently [1], [2], [3], [4], [5]. However, most of the proped
In this paper, we advocate to view this task as a problem of 555455ches use computationally expensive statisticat-inf
fast, large-scale retrieval. Intuitively, given a datasebf millions - el
of labeled scan points and their neighborhoods, we simply €NC€ technlques for. the cIaSS|f|cat|on, but modern 3D laser
search for similar points in the datasets and use the labels S€Nnsing devices easily produce massive datasets of up to now
of the retrieved ones to predict the labels of a novel point isg 1.3 million laser points per second. The current techniques
some local prediction model such as majority vote or logist  gre, therefore, not able to classify the data on-line. Is thi
regression. However, actually carrying this out requires lighly article, we address this problem and propose a new fast

efficient ways of (1) storing millions of scan points in memoy hb d lid f hine | ing f
and (2) quickly finding similar scan points to a target scan pant. approach based on novel ideas irom machine learning for

In this paper, we propose to address both issues by employing the classification of mass data.
Weiss et al’s recent spectral hashing. It represents each item A recent exciting development in the machine learning

in a database by a compact binary code that is constructed so community has been the insight that massive datasets are
that similar items will have similar binary code words. In turn, not only challenging but can also be viewed as an oppor-

similar neighbors have codes within a small Hamming distane tunity 161. Machi | . d dat . techni
of the code for the query. Then, we learn a logistic regressio UMY [6]. Machine learning and data mining techniques

model locally over all points with the same binary code word. typically consist of two parts: the model and the data.
Our experiments on real world 3D scans show that the resultip  Most effort in recent years has gone into the modeling

approach, called spectrally hashed logistic regression,an be  part. Massive datasets, however, allow one to move into
ultra fast at prediction time and outperforms state-of-the art 4,4 opposite direction: how much can the data itself help
approaches such as logistic regression and nearest neighibo us to solve the problém’? Halewst al. [7] even speak of

I. INTRODUCTION "the unreasonable effectiveness of data”. Massive daaset

Classification of sensor data is a fundamental abilitf'® likely to capture even very rare aspects of the problem
needed by autonomous robots operating in natural a hand. Does this also hold for 3D scan point classification
changing environments. It enables the systems to dis’s’shguitaSkS? Can we_learn _the charact_eristics of objects from very
properties of objects in their surrounding, which first ofd€NS€ laser points without learning complex models? These
all, is necessary for identifying basic characteristidee li are exa_(f:'tlyl';he protl)lems.we ex;;mme in Fh|s p?pelr. .
the drivability of terrain or the compliance of obstacles. SPECI '9";‘]_y’ we mvestlﬂgtg t ehqllljestl.on 0 Class'fy',“g
Classification can further more act as a filter to detect usef@PIeCts within 3D scans. This is a challenging problem &s iti
features in the data, for example to improve self-locatirat & NIgNlY non-linear optimization task. Consider for instan
and map building approaches. Above all, classification i€tecting cars in 3D laser scans. A car is not just a single
often a prerequisite to detect task-relevant objects, hvkic surface but it is composed of flat and curved surfaces. In turn
a cornerstone for every high-level behavior of an inteliige it is difficult — if not impossible — to elegantly describe the

autonomous system in terms of simple geometrical features so that the feature
For these reasons, the classification of sensor readind§CtOrs form a linear separable cluster in feature spads. It
both camera images and laser scan data, into semantica[ﬁ&‘?re likely that their descriptions scatter in the featyrace.

meaningful classes has received a lot of attention in coerput"d€€d, we may overcome this problem by ustujlective

vision and robotics. Especially in the robotics communityC - ntuitively. ol labels shonid

the interpretation of 3D laser scans has become an acti@ser point into account: intuitively, class labels shopidp-
agate smoothly among neighboring points. The increased
performance, however, comes at the expense of much higher
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perform classification using some simple local models sucbums of linear regressors instead of the usually used log-
as majority vote or logistic regressions. linear potentials [5] . Agrawakt al. [13] augmented a
Although conceptually simple, actually carrying out nearCRF with object potentials generated by segmenting the
est neighbor approaches requires highly efficient ways stene into objects and calculating the covariances of the
(1) storing millions of scans in memory and (2) quicklyobjects’ laser points. Lai and Fox [14] applied an exemplar
finding similar scans to a target scan. Our main contributioapproach using 3d models from the web, and employed
is to address both issues by representing each item indamain adaption in order to remove artefacts not visible in
database by a compact binary code that is constructed ksl laser scans. Pattersem al. [15] employed a nearest
that similar items will have similar binary code words. Inneighbor approach using spin images [16] and extended
turn, similar neighbors have codes within a small Hammingpaussian images (EGI) [17]. First a set of reference posts i
distance of the code for the query. Then, we learn a logistgampled from the labeled training scene and spin images are
regression model locally over all points with the same hinarcomputed. The spin images are stored in a database. When
code word. More precisely, we use Weist al’s recent classifying unseen scans spin images of reference points
spectral hashing to compute the compact binary codes [8jte matched against the database, and clustered hypotheses
Using codes learned by spectral hashing, retrieval can berified using the EGls.
amazingly fast — millions of queries per second on off-the- In general, a lot of effort has been invested into more
shelf PCs. Our experiments show that the resulting approagtomplex models and most of the approaches need a lot of
called spectrally hashed logistic regression, obeys atanhs processing power to classify laser points. As we pointed out
time complexity for classification of 3D laser points. More-in the introduction, we are moving in the opposite direction
over, the fast classification performance does not sacrifitespired by the work of Torralbat al. [18] who employed
accuracy. Spectrally hashed logistic regression works suhe power of a vast number of images to label arbitrary
prisingly well in our application: identifying cars, foli@, scenes according to a very, very large database of images
walls and load bearing areas in 3D laser scans. The lageom the well-known LabelMe dataset. They used distance-
scans are produced by a Velodyne laser scanner mountedgserving hashing to enable a fast retrieval of approxmat
a mobile robot that is equipped with an inertial navigatiomearest neighbors.
system (INS). The position and rotation information frommth  Finally, we have to mention the well-known locally
INS allows us to register the laser scans approximately. Tgeighted learning of Atkesoet al.[19], which learns a local
our knowledge, we are the first to apply spectral hashing tmodel for every query point using nearest neighbors from
a robotics task and in combination with logistic regressionthe training data. These neighbors are weighted according t
We now proceed as follows. First, we discuss relatethe distance to the query point. Now, our aim is to avoid the
work in section Il. In section lIl, we introduce the proposedieed for the exact calculation of tienearest neighbors, as
classification approach using spectral hashing, whichsis althis is too expensive for larger sets of training data.
briefly introduced in this section. Section IV presents our

current results and finally section V concludes and outlines .
future work. Assume that we have a huge amount of scan (points), say

N, and that the decision boundaries are very irregular. In
this case, nearest neighbor approaches are an elegant and
very flexible tool for classification. However, having fast
In robotics mostly data-driven approaches based on Cotechniques for finding nearest neighbors to a query is then
ditional Random Fields (CRF) [9] have been used to classifgssential.
3D point clouds. Angulovet al. [1] introduced Associa-  Recently, hashing methods for fast retrieval have received
tive Markov Networks [10] for this purpose, and most ofa lot of attention within the machine learning community se
the up-following approaches were based on ttodective €.9. [8], [20]. They learn a mapping from the input data to a
classificationapproach. However, these techniques requir@w-dimensional Hamming, i.e., binary space. Note that the
quadratic programming and linear programming, for leagninfact that the embeddings are binary is critical to ensure fas
and inference respectively, which is almost intractable foretrieval times. As [8], [20] report, this kind of retrievean
larger point sets. Several methods have been proposedb®amazingly fast; millions of queries per second on stahdar
speed up the process, either by using data reduction [2], [8pmputers. This is because the Hamming distance between
or by more efficient learning and inference methods [11Jwo objects can be computed via an xor operation and a bit
[4], [5]. In the following, we will briefly mention the most count. Moreover, if the input dimensionality is very higls, a
recent approaches for supervised 3D laser scan classificatin our case, hashing methods lead to enormous computational
and summarize their main ideas. savings as few bits are often already sufficient to encode
Munoz et al. showed in [4], how high-order interactions compactly the whole dataset.
between cliques instead of pair-wise couplings and already Hashing naturally leads to the following 3D scan points
classified scans can be used to allow accurate on-board clglassification approach:
sification. Furthermore, they proposed to use functional gr 1) (Hashing) Learn a compact binary code for a given
dient boosting [12] for learning node potentials as weighte set of N scans.

IIl. SPECTRALLY HASHED LOGISTIC REGRESSION

IIl. RELATED WORK



2) (Local Classification) Learn a local classification distribution onla, b], the eigenfunction®,(z) are given by
model such as majority vote or logistic regression on

all scans that have the same binary code. D (x) = sin (E + hm z) (5)
3) (Prediction) For classifying a new scan (point), 2 b-a

compute the code of, look-up the associated local o] _f kr |? 6

model, and use it to assign a class labekto k= exrp 2 b—a ’ ©6)

Indeed, this non-parametric large-scale classification aB\ssuming that data is uniformly distributed, we can now

proach s a sp(.a'mallcase of Iocally welghted regressioticulate the eigenfunctions and threshold the valuéstat
performing classification around a point of interest usitig a

obtain a codeword. This results in the following algorithon t

training scans that have identical binary codes only. As W&ctermine a hash functignfor data pointst — {z; € R"}:

will argue in the next section, if the look-up of the code for eul h iciol , , |
a new scan is done in a clever way, this can yield ultra fast 1) Calculate the: principle components using eigenvalue
decomposition of the covariance matrix. Rotate the

classification performance. Furthermore, as our expettiahen q di het | i |
evaluation will show, this approximation works surpriding ) ate}xi~e(1jgcor |n.g to ther largest eigenvectors, result-
well in our classification setting. It actually outperforms ing in z;7,0 < j <k.

nearest neighbor and logistic regression. 2) Determine for every dimensionl) = min, (5@(]))
_ andb") = maaz; () and evaluate the eigenvalues
A. Spectral Hashing according to (6). Sort the eigenvalues to find the

For computing the compact binary codes, we are using _ Smallest eigenvalues. _ _ _
Weisset al. spectral hashing [8]. The main benefit of spectral 3) Threshold the resulting eigenfunctioris; () with
hashing is that the partitioning of the feature space can be  Smallest eigenvalue & to obtain the hash code.
computed in linear time. As shown in [8], the algorithm is not restricted to uni-

Spectral hashing works as follows. To preserve distancd@rmly distributed data, and can generate hash codes that ar
one is interested in a hash function that maps nearby da@pable to find a good partition of the data, which allows
points z; and x; to binary hash codes that have a smalfo search efficiently for nearest neighbors. We will show in
Hamming distance. Thus, the objective for a hash functiotfie next section, how the space of data points is partitioned
h: R" — {0, 1}’2 which helps us to search efficiently in using this hashing algorithm. Furthermore, we will showt tha
large datasets; € R™ that is distributed according to a the calculation of the hash function can be done efficiently,
distributionp(z), can be formulated as follows: since we do not need to handle every data point explicitly:

computing the covariance is sufficient. In turn, we only have

: N N B A2 ol ol N g g 1O determine the minimum and maximum of the rotated
mm'/K(x“lJ) 1h(we) = h(xp)II”- plai) - pley) di de; feature vectors to get an partition of the feature space.

)
B. Combining Spectral Hashing and Logistic Regression
s t'/ h@)p(x) dz =0 2) The main idea underlying locally weighted regression is
T to use local models of linear regression learned frbm
/h(x)h(x) p(z)dz =1d (3)  neighboring points of a query point. By using this lazy

classification, one could approximate even non-linearetarg
Here, the functionk (z;, z;) defines the similarity between functions with local linear regression models. However,
different data points. A common choice is the Gaussian kefinding the k& nearest neighbors can get rather complex in
nel K (z;,2;) = exp(—|lz; — 2;]|* /€%). The two constraints high-dimensional data, so that the computational cost grow
encode the requirement that the different bits of hash cod@gth an increasing set of training points.
should be independent (Eq. 2) and uncorrelated (Eq. 3). To overcome this, we partition the feature space using
As Weisset al. [8] have shown, finding such codes is NPspectral hashing, learn local models directly from thenireg
hard. To overcome this problem, they relax the constraigfata and store these local logistic models for every pantiti
that the codewords need to be binakyx) € {0,1}*. This  given by the hash functioh, when necessary. If only feature
relaxed problem can be solved in polynomial time. Indeed, {fectors from one clasg lie in a hash bin, we just store a
has been shown that the solution is givenebgenfunctions bias weight3 in the weight vectorw, and the rest of the
®(z). If p(z),z = (2,2, ... (™) € R" is separable, weight vectors is initialized with-3 as bias weight. This is
i.e. p(x) = [[;pi(z?), and the similarity is defined by summarized in algorithm 1. More precisely, we use a binary
the Gaussian kernel then the solutidr) is given by the |ogistic regression with L2-regularization and train itdne-

product of thel-dimensional eigenfunctions against-all fashion to get a multi-class classificationt Bu
indeed the algorithm is not restricted to logistic regrassi
P, (x(l)) P, (x(2)) D, (x(")) (4) models, so that even non-linear classifiers could be used

to classify locally within a partition defined by the hash
and eigenvalug; -\, - - - A,,. Especially, ifp(x) is a uniform function. To get the class of an unseen laser point, we just
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Fig. 1. Some examples of the partition of a highly non-linézature space (a) using the proposed spectrally hashestitogegression. Subfigure (b)
is generated using bits, (c) usest bits, (d) was trained witl8 bits and in (e) we used6 bits for hashing of the feature space. The repetition insclas
assignments is caused by the sinusoid in the eigenfunati@onjunction with a dimension, where the minimum and maximuf the feature vectors in
that dimension is not the same as the minimal and maximakwafithat dimension. (Best viewed in color.)

compute the binary code using the learned hash functiomigorithm 1: Learn local logistic regression models

and retrieve the right local logistic model for classificat Data: training setX’ = {(z;,y:)}

the one with the same binary code. If no logistic model is \yith features vectors; € R? and labels

associated with that code, we compute the mean predictionsyi eV, =K

of all nearest models in the same Hamming distance. Result hash functionh, local logistic models
Figure 1 visualizes some examples of spectrally hashed L; = {(wo, ..., wg)}

logistic regression for different number of bits used foe th

hash codes. As on can see, with increasing hash size, th

éearn hashing function (cf. section I11-A)

partitioning increases and also the decision boundaries of;* bur'] I'd hasht a(kj)I e */
the local logistic regression models adapt to the non-tinea ore}?‘ci_(:;i(,xy‘i)) €4 do

feature space, as we have argued in the beginning of this
section. Furthermore, smaller partitions lead to less data
points inside a partition, thus the learning of the logistic /% learn | ocal nodels L. y
regression can be performed more efficiently due to the foreach h; € [0, 25=1] A H[h,] #l@ do

reduced size of the training set. But also a negative side if |{y|2x y)’e H{h)Y| 211 then

effect is observable: as the number of possible bits ineeas ! !

Hlh] == H[h;] U (2, y:)

foreachy € Y do

it gets more likely to perform overfitting, as we will see in (3,0,---,0) =y
the next section. w; = PO ’ ‘
{ (=6,0,---,0) ,otherwise.
IV. EVALUATION storew; in local modelsL;.
' end
To evaluate our approach, we use a dataset recorded else

with a Velodyne 3D laser scanner mounted on an QinetiQ foreachy € Y do . _
Longcross platform. The robot is equipped with an Ox- learn logistic regression with weights, .
ford Ltd. inertial navigation system (INS) that is sufficign storew, in local modelsL;.
precise to allow scan registration without additional magp end

software. As mentioned before, the laser scanner produces end

1.3 million laser points per second. As we want to compare €"

different classification approaches, we down-sampleding

360° laser scans from appro%6.000 to approx.8.600 by

taking only every tenth measurement from the scanner. By(ich as load bearing areas or foliage.

reducing the laser scans in this manner, we end up tR/
129.000 laser points per second. . Features
All experiments were done using)-fold stratified cross- In the experiments, we tried several features and feature

validation and the classification accuracy is averaged aer combinations proposed in different prior approaches, and
folds. The experiments were performed using precomputeéde well-known spin images [16] showed the best results.
feature vectors, so that the timing results do not incluge trtHowever, we also try to detect walls and buildings, and spin
time required for the evaluation of the features. The trgjni images in the original implementation, are not suitable to
set has been randomized before doing cross-validation- Hodistinguish between those, because they achieve rotationa
ever, we used for every cross-validation the same randoimvariance of features by using the point’'s normal as spin-
seed to get comparable results. We used a uniform claagis. We compensate this shortcoming by using the up-
distribution for learning the classifiers. This reduces theector instead, as proposed by Agraneslal. [13] for their

influence from classes that are significantly more promineribcal shape histograms. The up-vector is determined by the
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implemented a nearest neighbor classifier using the learned
hashing function. Like in algorithm 1, a hash table is
generated and the feature vectors hashed to the same code
are stored in a linked list for that bin. In experiments the
usage ofl6 bits and a Hamming distance dfto search for
the exact nearest neighbor yielded the best results.

Fig. 2 depicts the classification rates achieved. The neares
neighbor using théd-tree easily outperforms logistic regres-
. sion, which confirms our intuition that the feature space is
not linearly separable and nearest neighbor approaches can
handle this. Also the nearest neighbor using the hash func-
instance count tion of spectral hashing outperforms the logistic reg@ssi
Notable is the time required for classification using thehhas
compared to thé&d-tree as depicted in Fig. 4. Using hashing
results in a significant decrease of search time for nearest

orientation information of the INS system employed. We€ighbors, and the classification results remain comperabl
used in all experiments a bin size 6fl m and 20 bins Nevertheless, our approach with bits and4 bits out-
per dimension. performs even the nearest neighbor approach. This can be

explained by the usage of logistic regression, which is less
B. Results sensitive to outliers. The classifier witt6 bits performed

To test our approach, we compared the results with dif¥orse than the others using less bits due to over-fittinggusin

ferent other local classifiers. First, we used a binary tgis Insufficient training data. Fig. 5 shows an example laser
regression (LR) [21] as baseline with the same amount ofS¢an with a point classification achieved by our method.
training data and extended it to a multi-class classifier byn€ approach produces very good results, but still has some
training it in one-against-all fashion. Besides this, wsoal difficulties to distinguish between the classes foliage and
implemented a nearest neighbor classifier (NN) using tHéd's, which results from very similar appearance of some
ANN library [22]. However, due to the high computational'ower bushes with the front part of cars. Also notable is the
costs of querying nearest neighbors in high-dimensiortal dadecrease of classification accuracy, in regions where e sc
we only evaluated this approach up260.000 data points. 9ets sparser. . _ .
All classifiers were implemented in C++ and the experiments The even more interesting aspect of our approach is the
were performed on an Intel Xeon X5550 with67 GHz inference time (see Fig. 4) and the time needed for learning
using a single core ant2 GB memory. (see Fig. 3). In Fig. 4 logistic regression and the proposed
Because we are also interested in the performance gpectrally hashed logistic regression are the most efficien

spectral hashing as nearest neighbor approach (SHNN), &i@ssifiers, since in the case of logistic regression only
the weight vector has to be applied to the feature vector

Publicly available at http://www.autonlab.org. and scaled by the sigmoid function. In our approach the
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Fig. 3. Time needed for learning different classificatiopraaches.



Fig. 5.

@

(b)

Classification result of our proposed approach (hmared to a (a) manual labeling. The image is composes 360 degree scans which has

been classified separately. The classes are color-codetll@ssf load bearing = purple, car = yellow, vegetation = greed walls = blue. (Best viewed
in color.)

calculation is a little bit more time consuming, since wedav [4]
to rotate the data and evaluate the hash function. Learning
is more time consuming than logistic regression, espgciall [5]
when using only a small number of bits.

V. CONCLUSIONS ANDFUTURE WORKS

(6l

We have presented an extremely simple and hence efficient

algorithm for classifying 3D scan points called spectrally[7

hashed logistic regression. As shown, one simply learns g
hash function using spectral hashing — perform PCA on the

data and fit a multidimensional rectangle; the aspect rdtio ol

this multidimensional rectangle determines the code using
a simple formula — and uses it to look-up local logistid10]

regression models that are learned on scans mapped onto [Eq?

same code. Despite its simplicity, its performance is soper
to state-of-the-art methods in our experiments.
There are several interesting avenues for future worr12
ate

Next to running more experiments, one should investig
other (combinations of) features to improve the classificat

(23]

Another promising avenue is the overall speed-up of thﬁ4]
calculation of the features, which is currently the bottlek
in our current implementation. Finally, it is interesting t [15]
start exploring what can be called hashed locally learning i

general, i.e., easy-to-implement classification or regoss

(16]

approaches that easily scale to millions of data items and

run at real-time. Our experimental results are an encongagi

sign that this may not be insurmountable.
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