
Learning to Hash Logistic Regression
for Fast 3D Scan Point Classification

Jens Behley, Kristian Kersting, Dirk Schulz, Volker Steinhage and Armin B. Cremers

Abstract— Segmenting range data into semantic categories
has become a more and more active field of research in robotics.
In this paper, we advocate to view this task as a problem of
fast, large-scale retrieval. Intuitively, given a datasetof millions
of labeled scan points and their neighborhoods, we simply
search for similar points in the datasets and use the labels
of the retrieved ones to predict the labels of a novel point using
some local prediction model such as majority vote or logistic
regression. However, actually carrying this out requires highly
efficient ways of (1) storing millions of scan points in memory
and (2) quickly finding similar scan points to a target scan point.
In this paper, we propose to address both issues by employing
Weiss et al.’s recent spectral hashing. It represents each item
in a database by a compact binary code that is constructed so
that similar items will have similar binary code words. In tu rn,
similar neighbors have codes within a small Hamming distance
of the code for the query. Then, we learn a logistic regression
model locally over all points with the same binary code word.
Our experiments on real world 3D scans show that the resulting
approach, called spectrally hashed logistic regression, can be
ultra fast at prediction time and outperforms state-of-the art
approaches such as logistic regression and nearest neighbor.

I. I NTRODUCTION

Classification of sensor data is a fundamental ability
needed by autonomous robots operating in natural and
changing environments. It enables the systems to distinguish
properties of objects in their surrounding, which first of
all, is necessary for identifying basic characteristics like
the drivability of terrain or the compliance of obstacles.
Classification can further more act as a filter to detect useful
features in the data, for example to improve self-localization
and map building approaches. Above all, classification is
often a prerequisite to detect task-relevant objects, which is
a cornerstone for every high-level behavior of an intelligent
autonomous system.

For these reasons, the classification of sensor readings,
both camera images and laser scan data, into semantically
meaningful classes has received a lot of attention in computer
vision and robotics. Especially in the robotics community,
the interpretation of 3D laser scans has become an active

J. Behley , V. Steinhage and A. B. Cremers are with the Department of
Computer Science III, University of Bonn, 53117 Bonn, Germany.
K. Kersting is with the Knowledge Discovery Department, Fraunhofer
IAIS, Schloss Birlinghoven, 53754 Sankt Augustin, Germany.
D. Schulz is with the Unmanned Systems Department, Fraunhofer FKIE,
53343 Bonn-Wachtberg, Germany.
Kristian Kersting was supported by the Fraunhofer ATTRACT fellowship
STREAM and by the European Commission under contract number
FP7-248258-First-MM.
{behley, steinhage, abc}@iai.uni-bonn.de,
kristian.kersting@iais.fraunhofer.de,
dirk.schulz@fkie.fraunhofer.de

field of research, and very good results have been achieved
recently [1], [2], [3], [4], [5]. However, most of the proposed
approaches use computationally expensive statistical infer-
ence techniques for the classification, but modern 3D laser
sensing devices easily produce massive datasets of up to now
1.3 million laser points per second. The current techniques
are, therefore, not able to classify the data on-line. In this
article, we address this problem and propose a new fast
approach based on novel ideas from machine learning for
the classification of mass data.

A recent exciting development in the machine learning
community has been the insight that massive datasets are
not only challenging but can also be viewed as an oppor-
tunity [6]. Machine learning and data mining techniques
typically consist of two parts: the model and the data.
Most effort in recent years has gone into the modeling
part. Massive datasets, however, allow one to move into
the opposite direction: how much can the data itself help
us to solve the problem? Halevyet al. [7] even speak of
”the unreasonable effectiveness of data”. Massive datasets
are likely to capture even very rare aspects of the problem
at hand. Does this also hold for 3D scan point classification
tasks? Can we learn the characteristics of objects from very
dense laser points without learning complex models? These
are exactly the problems we examine in this paper.

Specifically, we investigate the question of classifying
objects within 3D scans. This is a challenging problem as it is
a highly non-linear optimization task. Consider for instance
detecting cars in 3D laser scans. A car is not just a single
surface but it is composed of flat and curved surfaces. In turn,
it is difficult – if not impossible – to elegantly describe them
in terms of simple geometrical features so that the feature
vectors form a linear separable cluster in feature space. Itis
more likely that their descriptions scatter in the feature space.
Indeed, we may overcome this problem by usingcollective
classificationapproaches. They take the surrounding of a
laser point into account: intuitively, class labels shouldprop-
agate smoothly among neighboring points. The increased
performance, however, comes at the expense of much higher
computational costs for learning and inference. When very
many scans are available, simple scan indexing techniques
can be used to retrieve scans with object arrangements
similar to the query scan. If we have a big enough database
then we can find, with high probability, scans looking very
close to a query scan, containing similar scenes with similar
objects arranged in similar spatial configurations. Moreover,
if scans in the retrieval set are (partially) labeled, then we
can propagate the labels to the query scan and in turn

perform classification using some simple local models such
as majority vote or logistic regressions.

Although conceptually simple, actually carrying out near-
est neighbor approaches requires highly efficient ways of
(1) storing millions of scans in memory and (2) quickly
finding similar scans to a target scan. Our main contribution
is to address both issues by representing each item in a
database by a compact binary code that is constructed so
that similar items will have similar binary code words. In
turn, similar neighbors have codes within a small Hamming
distance of the code for the query. Then, we learn a logistic
regression model locally over all points with the same binary
code word. More precisely, we use Weisset al.’s recent
spectral hashing to compute the compact binary codes [8].
Using codes learned by spectral hashing, retrieval can be
amazingly fast – millions of queries per second on off-the-
shelf PCs. Our experiments show that the resulting approach,
called spectrally hashed logistic regression, obeys a constant
time complexity for classification of 3D laser points. More-
over, the fast classification performance does not sacrifice
accuracy. Spectrally hashed logistic regression works sur-
prisingly well in our application: identifying cars, foliage,
walls and load bearing areas in 3D laser scans. The laser
scans are produced by a Velodyne laser scanner mounted on
a mobile robot that is equipped with an inertial navigation
system (INS). The position and rotation information from the
INS allows us to register the laser scans approximately. To
our knowledge, we are the first to apply spectral hashing to
a robotics task and in combination with logistic regression.

We now proceed as follows. First, we discuss related
work in section II. In section III, we introduce the proposed
classification approach using spectral hashing, which is also
briefly introduced in this section. Section IV presents our
current results and finally section V concludes and outlines
future work.

II. RELATED WORK

In robotics mostly data-driven approaches based on Con-
ditional Random Fields (CRF) [9] have been used to classify
3D point clouds. Angulovet al. [1] introduced Associa-
tive Markov Networks [10] for this purpose, and most of
the up-following approaches were based on thiscollective
classificationapproach. However, these techniques require
quadratic programming and linear programming, for learning
and inference respectively, which is almost intractable for
larger point sets. Several methods have been proposed to
speed up the process, either by using data reduction [2], [3]
or by more efficient learning and inference methods [11],
[4], [5]. In the following, we will briefly mention the most
recent approaches for supervised 3D laser scan classification
and summarize their main ideas.

Munoz et al. showed in [4], how high-order interactions
between cliques instead of pair-wise couplings and already
classified scans can be used to allow accurate on-board clas-
sification. Furthermore, they proposed to use functional gra-
dient boosting [12] for learning node potentials as weighted

sums of linear regressors instead of the usually used log-
linear potentials [5] . Agrawalet al. [13] augmented a
CRF with object potentials generated by segmenting the
scene into objects and calculating the covariances of the
objects’ laser points. Lai and Fox [14] applied an exemplar
approach using 3d models from the web, and employed
domain adaption in order to remove artefacts not visible in
real laser scans. Pattersonet al. [15] employed a nearest
neighbor approach using spin images [16] and extended
Gaussian images (EGI) [17]. First a set of reference points is
sampled from the labeled training scene and spin images are
computed. The spin images are stored in a database. When
classifying unseen scans spin images of reference points
are matched against the database, and clustered hypotheses
verified using the EGIs.

In general, a lot of effort has been invested into more
complex models and most of the approaches need a lot of
processing power to classify laser points. As we pointed out
in the introduction, we are moving in the opposite direction,
inspired by the work of Torralbaet al. [18] who employed
the power of a vast number of images to label arbitrary
scenes according to a very, very large database of images
from the well-known LabelMe dataset. They used distance-
preserving hashing to enable a fast retrieval of approximate
nearest neighbors.

Finally, we have to mention the well-known locally
weighted learning of Atkesonet al. [19], which learns a local
model for every query point usingk nearest neighbors from
the training data. These neighbors are weighted according to
the distance to the query point. Now, our aim is to avoid the
need for the exact calculation of thek nearest neighbors, as
this is too expensive for larger sets of training data.

III. SPECTRALLY HASHED LOGISTIC REGRESSION

Assume that we have a huge amount of scan (points), say
N , and that the decision boundaries are very irregular. In
this case, nearest neighbor approaches are an elegant and
very flexible tool for classification. However, having fast
techniques for finding nearest neighbors to a query is then
essential.

Recently, hashing methods for fast retrieval have received
a lot of attention within the machine learning community, see
e.g. [8], [20]. They learn a mapping from the input data to a
low-dimensional Hamming, i.e., binary space. Note that the
fact that the embeddings are binary is critical to ensure fast
retrieval times. As [8], [20] report, this kind of retrievalcan
be amazingly fast; millions of queries per second on standard
computers. This is because the Hamming distance between
two objects can be computed via an xor operation and a bit
count. Moreover, if the input dimensionality is very high, as
in our case, hashing methods lead to enormous computational
savings as few bits are often already sufficient to encode
compactly the whole dataset.

Hashing naturally leads to the following 3D scan points
classification approach:

1) (Hashing) Learn a compact binary code for a given
set ofN scans.

2) (Local Classification) Learn a local classification
model such as majority vote or logistic regression on
all scans that have the same binary code.

3) (Prediction) For classifying a new scan (point)x,
compute the code ofx, look-up the associated local
model, and use it to assign a class label tox.

Indeed, this non-parametric large-scale classification ap-
proach is a special case of locally weighted regression
performing classification around a point of interest using all
training scans that have identical binary codes only. As we
will argue in the next section, if the look-up of the code for
a new scan is done in a clever way, this can yield ultra fast
classification performance. Furthermore, as our experimental
evaluation will show, this approximation works surprisingly
well in our classification setting. It actually outperforms
nearest neighbor and logistic regression.

A. Spectral Hashing

For computing the compact binary codes, we are using
Weisset al.spectral hashing [8]. The main benefit of spectral
hashing is that the partitioning of the feature space can be
computed in linear time.

Spectral hashing works as follows. To preserve distances,
one is interested in a hash function that maps nearby data
points xi and xj to binary hash codes that have a small
Hamming distance. Thus, the objective for a hash function
h : R

n 7→ {0, 1}k, which helps us to search efficiently in
large datasetsxi ∈ R

n that is distributed according to a
distributionp(x), can be formulated as follows:

min.
∫

K(xi, xj) · ||h(xi) − h(xj)||
2 · p(xi) · p(xj) dxi dxj

(1)

s. t.
∫

h(x)p(x) dx = 0 (2)
∫

h(x)h(x)T p(x) dx = Id (3)

Here, the functionK(xi, xj) defines the similarity between
different data points. A common choice is the Gaussian ker-
nel K(xi, xj) = exp(−||xi − xj ||2/ǫ2). The two constraints
encode the requirement that the different bits of hash codes
should be independent (Eq. 2) and uncorrelated (Eq. 3).
As Weisset al. [8] have shown, finding such codes is NP
hard. To overcome this problem, they relax the constraint
that the codewords need to be binary,h(x) ∈ {0, 1}k. This
relaxed problem can be solved in polynomial time. Indeed, it
has been shown that the solution is given byeigenfunctions
Φ(x). If p(x), x =

(

x(1), x(2), . . . , x(n)
)

∈ R
n is separable,

i.e. p(x) =
∏

i pi(x
(i)), and the similarity is defined by

the Gaussian kernel then the solutionΦ(x) is given by the
product of the1-dimensional eigenfunctions

Φ1

(

x(1)
)

Φ2

(

x(2)
)

· · ·Φn

(

x(n)
)

(4)

and eigenvalueλ1 ·λ2 · · ·λn. Especially, ifp(x) is a uniform

distribution on[a, b], the eigenfunctionsΦk(x) are given by

Φk(x) = sin

(

π

2
+

kπ

b − a
x

)

(5)

λk = 1 − exp

(

−
ǫ2

2

∣

∣

∣

∣

kπ

b − a

∣

∣

∣

∣

2
)

. (6)

Assuming that data is uniformly distributed, we can now
calculate the eigenfunctions and threshold the values at0 to
obtain a codeword. This results in the following algorithm to
determine a hash functionh for data pointsX = {xi ∈ R

n}:

1) Calculate thek principle components using eigenvalue
decomposition of the covariance matrix. Rotate the
dataxi according to thek largest eigenvectors, result-
ing in x̃

(j)
i , 0 ≤ j < k.

2) Determine for every dimensiona(j) = minj

(

x̃
(j)
i

)

and b(j) = maxj

(

x̃
(j)
i

)

and evaluate the eigenvalues
according to (6). Sort the eigenvalues to find thek
smallest eigenvalues.

3) Threshold the resulting eigenfunctionsΦk(x) with
smallest eigenvalue at0, to obtain the hash code.

As shown in [8], the algorithm is not restricted to uni-
formly distributed data, and can generate hash codes that are
capable to find a good partition of the data, which allows
to search efficiently for nearest neighbors. We will show in
the next section, how the space of data points is partitioned
using this hashing algorithm. Furthermore, we will show that
the calculation of the hash function can be done efficiently,
since we do not need to handle every data point explicitly:
computing the covariance is sufficient. In turn, we only have
to determine the minimum and maximum of the rotated
feature vectors to get an partition of the feature space.

B. Combining Spectral Hashing and Logistic Regression

The main idea underlying locally weighted regression is
to use local models of linear regression learned fromk
neighboring points of a query point. By using this lazy
classification, one could approximate even non-linear target
functions with local linear regression models. However,
finding the k nearest neighbors can get rather complex in
high-dimensional data, so that the computational cost grows
with an increasing set of training points.

To overcome this, we partition the feature space using
spectral hashing, learn local models directly from the training
data and store these local logistic models for every partition
given by the hash functionh, when necessary. If only feature
vectors from one classy lie in a hash bin, we just store a
bias weightβ in the weight vectorwy and the rest of the
weight vectors is initialized with−β as bias weight. This is
summarized in algorithm 1. More precisely, we use a binary
logistic regression with L2-regularization and train it inone-
against-all fashion to get a multi-class classification. But
indeed the algorithm is not restricted to logistic regression
models, so that even non-linear classifiers could be used
to classify locally within a partition defined by the hash
function. To get the class of an unseen laser point, we just

(a) (b) (c) (d) (e)

Fig. 1. Some examples of the partition of a highly non-linearfeature space (a) using the proposed spectrally hashed logistic regression. Subfigure (b)
is generated using2 bits, (c) uses4 bits, (d) was trained with8 bits and in (e) we used16 bits for hashing of the feature space. The repetition in class
assignments is caused by the sinusoid in the eigenfunction in conjunction with a dimension, where the minimum and maximum of the feature vectors in
that dimension is not the same as the minimal and maximal value of that dimension. (Best viewed in color.)

compute the binary code using the learned hash function
and retrieve the right local logistic model for classification,
the one with the same binary code. If no logistic model is
associated with that code, we compute the mean predictions
of all nearest models in the same Hamming distance.

Figure 1 visualizes some examples of spectrally hashed
logistic regression for different number of bits used for the
hash codes. As on can see, with increasing hash size, the
partitioning increases and also the decision boundaries of
the local logistic regression models adapt to the non-linear
feature space, as we have argued in the beginning of this
section. Furthermore, smaller partitions lead to less data
points inside a partition, thus the learning of the logistic
regression can be performed more efficiently due to the
reduced size of the training set. But also a negative side
effect is observable: as the number of possible bits increases,
it gets more likely to perform overfitting, as we will see in
the next section.

IV. EVALUATION

To evaluate our approach, we use a dataset recorded
with a Velodyne 3D laser scanner mounted on an QinetiQ
Longcross platform. The robot is equipped with an Ox-
ford Ltd. inertial navigation system (INS) that is sufficiently
precise to allow scan registration without additional mapping
software. As mentioned before, the laser scanner produces
1.3 million laser points per second. As we want to compare
different classification approaches, we down-sampled single
360◦ laser scans from approx.86.000 to approx.8.600 by
taking only every tenth measurement from the scanner. By
reducing the laser scans in this manner, we end up by
129.000 laser points per second.

All experiments were done using10-fold stratified cross-
validation and the classification accuracy is averaged overall
folds. The experiments were performed using precomputed
feature vectors, so that the timing results do not include the
time required for the evaluation of the features. The training
set has been randomized before doing cross-validation. How-
ever, we used for every cross-validation the same random
seed to get comparable results. We used a uniform class
distribution for learning the classifiers. This reduces the
influence from classes that are significantly more prominent,

Algorithm 1 : Learn local logistic regression models

Data: training setX = {(xi, yi)}
with features vectorsxi ∈ R

d and labels
yi ∈ Y, |Y| = K
Result: hash functionh, local logistic models

Li = {(w0, . . . , wK)}

learn hashing functionh (cf. section III-A)
/* build hashtable */
foreach (xi, yi) ∈ X do

hi := h(xi)
H [hi] := H [hi] ∪ (xi, yi)

end
/* learn local models Li */
foreach hi ∈ [0, 2k−1] ∧ H [hi] 6= ∅ do

if |{y|(x, y) ∈ H [hi]}| = 1 then
foreach y ∈ Y do

wj =

{

(β, 0, · · · , 0) , j = y
(−β, 0, · · · , 0) , otherwise.

storewj in local modelsLi.
end

else
foreach y ∈ Y do

learn logistic regression with weightswy .
storewy in local modelsLi.

end
end

end

such as load bearing areas or foliage.

A. Features

In the experiments, we tried several features and feature
combinations proposed in different prior approaches, and
the well-known spin images [16] showed the best results.
However, we also try to detect walls and buildings, and spin
images in the original implementation, are not suitable to
distinguish between those, because they achieve rotational
invariance of features by using the point’s normal as spin-
axis. We compensate this shortcoming by using the up-
vector instead, as proposed by Agrarwalet al. [13] for their
local shape histograms. The up-vector is determined by the

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0

 5
00

00

 1
00

00
0

 1
50

00
0

 2
00

00
0

 2
50

00
0

 3
00

00
0

 3
50

00
0

 4
00

00
0

cl
as

si
fic

at
io

n
ra

te

instance count

Classification rate per amount of training data

NN
LR

SHNN
SHLR (16)

SHLR (8)
SHLR (4)

Fig. 2. Classification rates using10 fold cross-validation with different
classification approaches.

 1

 10

 100

 1000

 10000

 0

 5
00

00

 1
00

00
0

 1
50

00
0

 2
00

00
0

 2
50

00
0

 3
00

00
0

 3
50

00
0

 4
00

00
0

du
ra

tio
n

in
 s

ec
on

ds

instance count

Learn time per amount of training data

NN
LR

SHNN
SHLR (16)

SHLR (8)
SHLR (4)

Fig. 3. Time needed for learning different classification approaches.

orientation information of the INS system employed. We
used in all experiments a bin size of0.1 m and 20 bins
per dimension.

B. Results

To test our approach, we compared the results with dif-
ferent other local classifiers. First, we used a binary logistic
regression (LR)1 [21] as baseline with the same amount of
training data and extended it to a multi-class classifier by
training it in one-against-all fashion. Besides this, we also
implemented a nearest neighbor classifier (NN) using the
ANN library [22]. However, due to the high computational
costs of querying nearest neighbors in high-dimensional data,
we only evaluated this approach up to250.000 data points.
All classifiers were implemented in C++ and the experiments
were performed on an Intel Xeon X5550 with2.67 GHz
using a single core and12 GB memory.

Because we are also interested in the performance of
spectral hashing as nearest neighbor approach (SHNN), we

1Publicly available at http://www.autonlab.org.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0

 5
00

00

 1
00

00
0

 1
50

00
0

 2
00

00
0

 2
50

00
0

 3
00

00
0

 3
50

00
0

 4
00

00
0

du
ra

tio
n

in
 s

ec
on

ds

instance count

Average inference time per instance

NN
LR

SHNN
SHLR (16)

SHLR (8)
SHLR (4)

Fig. 4. Time needed for classification of one laser point (without
computation of the features).

implemented a nearest neighbor classifier using the learned
hashing function. Like in algorithm 1, a hash table is
generated and the feature vectors hashed to the same code
are stored in a linked list for that bin. In experiments the
usage of16 bits and a Hamming distance of1 to search for
the exact nearest neighbor yielded the best results.

Fig. 2 depicts the classification rates achieved. The nearest
neighbor using thekd-tree easily outperforms logistic regres-
sion, which confirms our intuition that the feature space is
not linearly separable and nearest neighbor approaches can
handle this. Also the nearest neighbor using the hash func-
tion of spectral hashing outperforms the logistic regression.
Notable is the time required for classification using the hash
compared to thekd-tree as depicted in Fig. 4. Using hashing
results in a significant decrease of search time for nearest
neighbors, and the classification results remain comparable.

Nevertheless, our approach with8 bits and 4 bits out-
performs even the nearest neighbor approach. This can be
explained by the usage of logistic regression, which is less
sensitive to outliers. The classifier with16 bits performed
worse than the others using less bits due to over-fitting using
insufficient training data. Fig. 5 shows an example laser
scan with a point classification achieved by our method.
The approach produces very good results, but still has some
difficulties to distinguish between the classes foliage and
cars, which results from very similar appearance of some
lower bushes with the front part of cars. Also notable is the
decrease of classification accuracy, in regions where the scan
gets sparser.

The even more interesting aspect of our approach is the
inference time (see Fig. 4) and the time needed for learning
(see Fig. 3). In Fig. 4 logistic regression and the proposed
spectrally hashed logistic regression are the most efficient
classifiers, since in the case of logistic regression only
the weight vector has to be applied to the feature vector
and scaled by the sigmoid function. In our approach the

(a) (b)

Fig. 5. Classification result of our proposed approach (b) compared to a (a) manual labeling. The image is composed of5 360 degree scans which has
been classified separately. The classes are color-coded as follows load bearing = purple, car = yellow, vegetation = green and walls = blue. (Best viewed
in color.)

calculation is a little bit more time consuming, since we have
to rotate the data and evaluate the hash function. Learning
is more time consuming than logistic regression, especially
when using only a small number of bits.

V. CONCLUSIONS ANDFUTURE WORKS

We have presented an extremely simple and hence efficient
algorithm for classifying 3D scan points called spectrally
hashed logistic regression. As shown, one simply learns a
hash function using spectral hashing – perform PCA on the
data and fit a multidimensional rectangle; the aspect ratio of
this multidimensional rectangle determines the code using
a simple formula – and uses it to look-up local logistic
regression models that are learned on scans mapped onto the
same code. Despite its simplicity, its performance is superior
to state-of-the-art methods in our experiments.

There are several interesting avenues for future work.
Next to running more experiments, one should investigate
other (combinations of) features to improve the classification.
Another promising avenue is the overall speed-up of the
calculation of the features, which is currently the bottleneck
in our current implementation. Finally, it is interesting to
start exploring what can be called hashed locally learning in
general, i.e., easy-to-implement classification or regression
approaches that easily scale to millions of data items and
run at real-time. Our experimental results are an encouraging
sign that this may not be insurmountable.

REFERENCES

[1] D. Anguelov, B. Taskar, V. Chatalbashev, D. Koller, D. Gupta,
G. Heitz, and A. Ng, “Discriminative Learning of Markov Random
Fields for Segmentation of 3D Scan Data,” inCVPR, vol. 2, 2005, pp.
169–176.

[2] R. Triebel, K. Kersting, and W. Burgard, “Robust 3D Scan Point
Classification using Associative Markov Networks,” inICRA, 2006,
pp. 2603–2608.

[3] E. H. Lim and D. Suter, “Conditional Random Field for 3D point
clouds with Adaptive Data Reduction,” inInt. Conf. on Cyberworlds,
2007, pp. 404–408.

[4] D. Munoz, N. Vandapel, and M. Hebert, “Onboard Contextual Classifi-
cation of 3-D Point Clouds with Learned High-order Markov Random
Fields,” in ICRA, 2009, pp. 4273–4280.

[5] D. Munoz, J. A. D. Bagnell, N. Vandapel, and M. Hebert, “Contextual
Classification with Functional Max-Margin Markov Networks,” in
CVPR, 2009, pp. 975–982.

[6] A. Torralba, R. Fergus, and W. T. Freeman, “80 Million Tiny Images:
A Large Data Set for Nonparametric Object and Scene Recognition,”
TPAMI, vol. 30, no. 11, pp. 1958–1970, 2008.

[7] A. Halevy, P. Norvig, and F. Pereira, “The Unreasonable Effectiveness
of Data,” IEEE Intelligent Systems, vol. 24, no. 2, pp. 8–12, 2009.

[8] Y. Weiss, A. Torralba, and R. Fergus, “Spectral Hashing,” in NIPS,
2009, pp. 1753–1760.

[9] J. Lafferty, A. McCallum, and F. Pereira, “Conditional Random Fields:
Probabilstic Models for Segmenting and Labeling Sequence Data,” in
ICML, 2001, pp. 282–289.

[10] B. Taskar, V. Chatalbashev, and D. Koller, “Learning Associative
Markov Networks,” inICML, 2004, pp. 807–814.

[11] D. Munoz, N. Vandapel, and M. Hebert, “Directional Associative
Markov Network for 3-D Point Cloud Classification,” inProc. of the
4th Int. Symp. on 3D Data Processing, Visualization and Transmis-
sion, 2008, pp. 63–70.

[12] N. Ratliff, J. A. Bagnell, and S. Srinivasa, “ImitationLearning for
Locomotion and Manipulation,” inHumanoids, 2007.

[13] A. Agrawal, A. Nakazawa, and H. Takemura, “MMM-classification of
3D Range Data,” inICRA, 2009, pp. 2269–2274.

[14] K. Lai and D. Fox, “3D laser scan classification using webdata and
domain adaptation,” inRSS, 2009.

[15] A. Patterson, P. Mordohai, and K. Daniilidis, “Object Detection from
Large-Scale 3D Datasets using Bottom-up and Top-down Descriptors,”
in ECCV, 2008, pp. 553–566.

[16] A. Johnson and M. Hebert, “Using spin images for effcient object
recognition in cluttered 3D scenes,”TPAMI, vol. 21, no. 5, pp. 433–
449, 1999.

[17] B. Horn, “Extended gaussian images,”Proc. of the IEEE, vol. 72,
no. 12, pp. 1656–1678, 1984.

[18] A. Torralba, R. Fergus, and Y. Weiss, “Small codes and large databases
for recognition,” inCVPR, 2008.

[19] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally Weighted
Learning,” AI Review, vol. 11, pp. 11–73.

[20] R. Salakhutdinov and G. Hinton, “Semantic Hashing,”Int. J. Approx.
Reasoning, vol. 50, no. 7, pp. 969–978, 2009.

[21] P. Komarek and A. Moore, “Making Logistic Regression A Core
Data Mining Tool: A Practical Investigation of Accuracy, Speed,
and Simplicity,” technical report, Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA, Tech. Rep., May 2005.

[22] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu,“An
optimal algorithm for approximate nearest neighbor searching fixed
dimensions,”J. of the ACM, vol. 45, pp. 891–923, 1998.

