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Abstract. This paper tackles the problem of 3D object pose tracking
from monocular cameras. Data association is performed via a variant of
the Iterative Closest Point algorithm, thus making it robust to noise and
other artifacts. We re-initialise the hypothesis space based on the result-
ing re-projection error between hypothesised models and observed image
objects. This is performed through a non-linear minimisation step after
correspondences are found. The use of multi-hypotheses and correspon-
dences refinement, lead to a robust framework. Experimental results with
benchmark image sequences indicate the effectiveness of our framework.
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1 Introduction

Tracking of 3D objects from a monocular camera is important for numerous
applications, including robotic control, grasping and manipulation. Several ad-
vances have been made but remains a difficult problem due to issues raised
from both a theoretical and a practical perspective. Various approaches have
been suggested (see survey in [1]), with most commonly employed being those
of ‘model-based’ methods (see survey in [2]).

Early work by Harris [3] utilised a 3D CAD model which is projected onto
the image frame and registered to the image extracted contour. A similar ap-
proach is employed in [4], where the model takes the form of a parametrised
3D object. Since these early works, great effort has been taken to improving
upon the correspondence between the object’s model and image contours. For
example, Drummond and Cipolla [5] use binary space partition trees to deter-
mine the model contour (edge points) and subsequently perform a 1D search for
corresponding points along the normal of the projected contour on the image.
In [6], registration is based on the iterative closest point (ICP), but it consid-
ers the re-projection error as a non-linear minimization problem that is solved
via the Levenberg–Marquardt (LM) algorithm. Non-linear error minimisation is
also utilised in [4, 7] but with a combined 1D point search: the former identifies



correspondences and then performs LM minimisation, whilst the latter locates
correspondences by incorporating minimisation of a geodesic active contour ob-
jective function using gradient descent.

Even though the aforementioned approaches do consider refinement of the
estimated object pose, they do not consider it as a means to re-initialisation:
i.e. evaluating new model hypotheses. Inasmuch most tracking algorithms as-
sume that a given ‘start’ or previous estimate of the object pose is sufficient for
algorithm initialisation / re-initialisation. Alas, for erroneous pose initialisation
values the tracker either does not converge to the true pose, or loses track of the
object after some time in long image sequences.

To compensate for initialisation / re-initialisation issues, multiple pose hy-
potheses have been considered. An initialisation procedure is offered in [4], but
it relies on motion segmentation, based on the displacement of extracted image
features (contour / edges) between consecutive frames. Vacchetti et al. [8] employ
a limited number of low level hypotheses and the tracking problem is solved via
‘local’ bundle adjustment. The incorporation of multi-hypotheses has recently
been given particular attention when formulated within probabilistic frameworks
(e.g. in [9, 10]). In [11], a Sequential Monte Carlo (SMC) framework has been
suggested, where a greater number of pose hypotheses (i.e. particles) is generated
and maintained. Unfortunately the search space may be too large to converge at
a good initialisation pose and within reasonable time limits. Re-initialisation is
considered for establishing and generating a higher number of hypotheses (par-
ticles), when degenerate pose estimates occur based on the effective particle size
defined in [12]. Unfortunately, SMC frameworks are computationally expensive.
For example in [11], roughly a single pose estimate per second can be provided.

In this paper we propose the application of image extracted features (Section
2) in a multiple hypotheses 3D object tracking (MH3DOT) framework (Section
3) from known 3D models. However, for finding correspondences in dissimilar
model and image point feature sets, we utilise the least median of squares er-
ror (Section 3.1). To compensate for re-initialisation issues we further perform
a short term adjustment over given correspondence sets via non-linear minimi-
sation (Section 3.2). We apply our MH3DOT method on benchmark sequences
and illustrate that it is sufficiently robust for tracking over long time period and
for a number of challenges in visual tracking systems (Section 4).

2 Extracted image features

To extract image features (contours and edges) we extend the 2D tracking ap-
proach of [13, 14] to apply for multiple objects, according to which foreground
coloured pixels are identified based on their colour and grouped together based
on their colour histograms. Location and shape of each tracked colour pixels
group is maintained by a set of pixel hypotheses which are initially sampled
from the observed histograms and are propagated from frame t to t+ 1 accord-
ing to linear object dynamics computed by a Kalman filter. The distribution of
the propagated pixel hypotheses provides a representation for the uncertainty in



Fig. 1. Extracted image features. From left to right: the original image; the result
of thresholding operations; pixel probabilities after labelling; resulting point features,
where the contour is shown in yellow and the internal edge is depicted in green.

both the 2D position and the shape of the tracked object. There are no explicit
assumptions about the objects motion, shapes and dynamics.

Based on said templates and histograms a number of colour classes ci, i ∈ N∗

are formed. This type of primitives can be used in an off-line training pro-
cess thus building a classifier based on the Bayes rule. The posterior prob-
ability for each pixel In,m with color c to belong to a color class ci is com-
puted according to Bayes rule P (ci|In,m) = (P (ci)/P (In,m))P (In,m|ci), where
P (In,m) =

∑
j P (In,m|cj)P (cj). The prior probabilities of foreground pixels hav-

ing P (In,m) specific colour c and P (ci) specific colour class, are computed via
off-line training. P (In,m|ci) is the likelihood of colour c foreground regions for
specific colour class.

The algorithm handles the issue of assigning a pixel in more than one color
classes / objects, by assigning to the class with the highest probability. Using
multi-level thresholding operations [15] and standard connected components la-
beling in the totality of the image [13], we acquire all regions that have high
probability of belonging to the tracked object. A further query within contour’s
pixel regions reveals internal edges of the object (see example of Fig. 1).

3 Methodology for tracking

In our methodology the model and image point features correspondences are
found via a ‘correspondence process’. This is performed using an Iterative Closest
Point variant, which makes for robustness to noise and other artifacts. Hypothe-
ses are formed from rendered 3D models and are re-initialised by incorporating
a non-linear minimisation step over a short term window. This is the ‘interpre-
tation process’, which adjusts and bounds the pose error.

3.1 Correspondence Process

Given the (intrinsic) camera calibration matrix K and a projection matrix
P = [R|t], then model 3D vectors mi can be projected to the image plane;
that is ḿi = KPmi, where mi are 3D points from model database and ḿi

represents the 3D-to-2D projection model points. From the rendered model ḿi,
we subsequently extract the projected feature model points m̂i. In the model



Fig. 2. The TrICP correspondence process: the blue line defines the observed image
feature points; the green line illustrates the down-projected model points; the red lines
denote the trimmed least squares point correspondences.

feature extraction case, no multi-thresholding and labeling operations are per-
formed, since the rendered down-projection is much simpler. The set of such
points M = {m̂i}nm

1 is the employed model representation in our work. Ob-
served image feature points are P = {p̂j}

np

1 are extracted using the procedure
of Section 2.

Iterative Closest Point (ICP) algorithm and its variants have been extensively
studied for matching. However, all points from P, M (or subsets thereof) need be
matched due to the iterative least mean squares error. Thus, in the presence of
noise and artifacts (e.g. cluttered background) the matching process can rapidly
deteriorate. For these reasons we employ ICP with a least median of squares error
[16] with a ‘trimming’ operation. The Trimmed Least Squares ICP (TrICP) [17],
allows for the two point sets to contain unequal number of points (i 6= j). In
our implementation, TrICP calculates the translation and rotation between the
feature point sets by ‘minimizing’ the sum of the least median squared individual
Mahalanobis distances [16], defined as

d2
ij = (m̂i − p̂j)

T(Smi + Spj )−1(m̂i − p̂j) (1)

where Smi
is the covariance, thus the uncertainty, on the position of point feature

m̂i; and respectively for Spj of p̂j .
To improve speed we first employ nearest neighbour search in P, M using

uniform grid structures1. The best possible alignment between data / model
sets is found by ‘sifting’ through at most i nearest-neighbour combinations in
an attempt to find a subset of size less than j, which yields the lowest sum of
ordered d2

ij values. When performing the least median search two thresholds are
employed: (i) max distance to be used between valid point combinations, and (ii)
max percentage of points allowed for the ‘trimming’ operation. An example of
the correspondence loop can be found in Fig. 2, where the trimmed least squares
point correspondences can also be seen.

Hypotheses initialisation: The starting point for finding correspondences is mod-
els generation from a parametrised pose estimate s = (tx, ty, tz, αx, αy, αz) given

1 Other structures like ‘range-trees’ would cost with each queryO(N logN) as opposed
to O(N) in the uniform case.



at the previous frame instance, where t and α are the translation and rotation
elements respectively. However, at the start of an image sequence this may not be
the case (no prior pose is provided). Thus, we need to have in place an initialisa-
tion procedure, so that we generate a representative search space over rotations
(αx + δαx, αy + δαy, αz + δαz). The term δα can be assigned as dictated by a
number of increment steps (N) over the full rotation range (0, π) of the corre-
sponding axis. However, this results in at least 3N(N2 + 1) model hypotheses,
which will require a great computational effort. In our implementation, rotations
over the x, y axes, are constrained by the use of of monitoring the displacement
of image extracted observed features, based on the assumption that for the first
few frames, neighbouring moved image features represent projected features of
the object we wish to initialise for our tracking process. It can be estimated
that this constraint reduces the model hypothesis space to approximately N2.
The advantage of this procedure is that there will always exist a pose estimate,
reflecting the system’s ‘best guess’ of what the actual pose of the object is.

With respect to the covariance matrix Spj , this is a 2× 2 matrix with prede-
termined values modelling the observation noise on the camera frame, such that
0 < σx, σy < 0.2; experimentally verified as an appropriate threshold. It should
be evident that the higher the σx, σy values, the higher the uncertainty expected
over the x and y axis respectively. The covariance matrix Smi

is initialised as
a unit matrix, and is subsequently updated within the interpretation process of
Section 3.2.

3.2 Interpretation Process

The ‘re-initialisation’ problem mentioned in Section 1, can be formulated as a
minimisation problem either within small image frames sequence window (local)
or a large window (global) bundle adjustment framework. Inspired by [4], we use
an ‘interpretation’ loop because the correspondence sets’ found in Section 3.1
process, need to be assessed for their ‘validity’ (i.e. reduce the number of outliers)
as time passes over a sequence of neighbouring frames. Therefore the resulting set
of model interpretations, are those that result in the smallest residuals between
models and observed point features. Only those with the smallest residual are
referenced as potential solutions and maintained over the next few frames. The
aforementioned residuals are thus re-evaluated via non-linear minimisation of
the re-projection error, between the model(s) and observed feature points. This
is expressed as the sum of squares of a large number of nonlinear real-valued
functions; i.e. a non-linear least squares problem. Thus, the objective function
is formulated as:

ŝt = argmin
s

n∑
i=1

||pi − f(s,mi)||2 (2)

where f(·) is the function that projects the 3D model points to the image plane,
according to s.



Fig. 3. The interpretation process: an example of pose model best hypothesis after the
LM optimisation step takes place.

Assuming an initial pose estimate ŝ equal to the current TrICP pose esti-
mate, found during the correspondence process, the pose is updated iteratively
according to ŝt = ŝt +∆t, where ∆t is given by:

∆t = −(JTJ + µI)−1JTεt (3)

and J is the Jacobian resulting from f(·) computed at st, and εt = |f(ŝt)−f(st)|.
The scalar µ, computed after every iteration, is a ‘dumping term’ and controls
the behavior of a Levenberg-Marquardt (LM) algorithm. If the updated pose
leads to a reduction in the error, the update is accepted and the process repeats
with a decreased damping term µ. Otherwise, the damping term is increased,
and the process iterates until a value of ∆t that decreases the error is found.

An example output of this process can be seen in Fig. 3, 4. In Fig. 3 we
illustrate a case where we selected the best hypothesis out of the initialN number
of hypothesis generated. The realisation of these N number of hypotheses is
illustrated in Fig. 4. At run-time execution we have set the generation of 35
hypotheses when the error is deemed to be large. In Frame 1300 the error was
at 0.1689, i.e. greater than the preset value of 0.0025. Of the total number of
formed hypotheses, and at Frame 1302 they are reduced to 6. In total, from
Frame 1300 to Frame 1304, only three hypotheses survive (from a least squares
fitting error of 0.1688 to 0.0022.

In this local framework, the normal equations have a sparse block structure.
This is due to the fact that there is a lack of interaction among parameters for
different (down-projected) 3D points and camera extracted feature points. This
can be exploited to the overall algorithm computational benefit by avoiding
storage and operation upon zero elements. Thus a sparse variant of the LM
algorithm that takes advantage of the normal equations zeros pattern, greatly
reduces the computational effort involved [18].

Hypotheses re-initialisation: Contour and edge points of an object may not pro-
vide enough information to uniquely identify the objects pose. This would be-
come more prominent when occluded areas of the object and natural obstructions
as well as the object coming in and out of the field of view of the camera.

To remedy for the aforementioned, if in the TrICP correspondence loop the
best pose estimate has a large error attached to it, then an LM interpretation
process is initiated. For a large LM error a greater number of rendered model hy-
potheses are generated. Hypotheses are generated by rotating the object model



Frame No. Hyps Input Generated Hyps

1301 35

1303 8

1304 6

1305 3

Fig. 4. An initialisation / re-initialisation case with hypotheses maintenance: a large
re-projection error initiates a threshold number of hypothesis. For illustration purposes
only few of the true number of generated hypotheses is reported.

with respect to a previous frame’s pose estimate. The number of frames is dic-
tated by the number of frames LM is allowed to operate upon.

Each of these model hypotheses is assigned a value of the goodness-of-fit with
respect to the current image frame. The values are updated from frame to frame
based on the minimization of the objective function. Hence, multiple hypothe-
ses are generated only when the error returned by the minimization algorithm
exceeds a threshold. The covariance matrix calculated in the LM minimisation
step, is assigned for Smi in the correspondence process’.

Particle filters perform re-initialisation using Doucet’s effective particle size
Neff [12]. In [11], and to avoid getting trapped in local minima, an additional
rule is considered whereas if Neff < Nthreshold then a set max number of pose hy-
potheses are generated. In our methodology a max number of model hypotheses
is generated only when εt < εthreshold, i.e. the error returned by the minimization
algorithm exceeds a given threshold, or when a max number of LM iterations has
been reached. We derive our ‘efficient number of hypotheses’ Nhyp using Cheby-
shev’s inequality for n independent random variables. It follows that, for some
mean value µ = max(µi) and variance σ = max(σi) over the observations made
for the set of image frames and for pose vector values s = {Si}, the probability
within an expected sensitivity k is:

P

{∣∣∣∣∣
n∑

i=1

(Si/n)− µ ≥ k

∣∣∣∣∣
}
≤ σ/nk2 (4)



Table 1. Average total error in full image sequence taken per frame in image sequence.
The total translational error is in mm and rotation in degrees. Reported time is in msec.

Sequence Challenges Methodology Time
Total error

X Y Z Roll Pitch Yaw

Panda toy illumination, clutter

BLORT 84 3.8 6.6 3.3 2.1 3.2 1.3
LM-ICP 31 20.2 32.0 11.7 2.7 6.3 4.7

ViSP 40 12.7 21.1 13.4 7.5 4.4 3.4
MH3DOT 132 3.9 5.5 3.1 2.2 2.1 1.9

Coffee box viewpoint, scale

BLORT 147 1.2 2.3 1.8 3.0 4.2 1.7
LM-ICP 54 11.3 7.6 4.4 4.1 11.0 6.8

ViSP 62 6.2 4.7 2.1 3.1 5.1 4.9
MH3DOT 195 1.4 2.5 1.9 3.2 4.1 1.5

Mug/Cup viewpoint, clutter

BLORT 150 2.2 1.7 2.9 13.1 11.7 3.5
LM-ICP 85 13.1 12.5 12.9 6.8 9.6 8.2

ViSP 98 7.0 5.1 8.6 6.6 23.1 11.0
MH3DOT 224 1.3 1.9 2.3 2.8 5.6 2.3

For example, if σ = 1 and we wish to be 95% confident that our estimations are
within k = εt = 0.5 units at some model hypotheses of pose s then σ/nk2 =
1/0.25n = 4/n and our Nhyp = 4/0.05 = 80, where the estimate n is assumed to
be sufficient. An example of re-initialisation (Nhyp = 35) is provided in Fig. 4.

4 Results

In order to evaluate our approach we have used the BoBoT2 benchmark on
tracking sequences which include partial ground truth data. For evaluation over
model based with no hypotheses generation and maintenance we applied the
ViSP3 software toolbox and a variant of LM-ICP. To evaluate performance of
our MH3DOT and other multiple pose hypotheses methods, we have applied
the BLORT software toolbox, which implements a particle filter. The results
are summarised in Table 1. It should be noted that both ViSP and BLORT use
hardware acceleration. Our implementation does not currently support hardware
acceleration. Optimisations are performed in the sense of custom matrix and
array operations, based on uBLAS and Lapack libraries. For completeness we
also report the computational time required by each method. We note that our
method is close to BLORT in terms of computational performance and certainly
applicable for on-line applications. A quantitative analysis on the sequences used
alongside the aforementioned software solutions, is presented in Table 1.

For our experimental test, we set n = 100 for both BLORT (max particles
number) and MH3DOT (effective number of hypotheses). In the case of LM-
ICP and ViSP, the methods do not employ multiple hypotheses (n = 1). It
should be noted from the error results of Table 1, that BLORT reports less

2 http://www.iai.uni-bonn.de/~kleind/tracking/, /~martin/tracking.html
3 http://www.irisa.fr/lagadic/visp/visp.html



Fig. 5. Snapshot images with super imposed pose results from BoBoT’s ‘cup’ image
sequence: MH3DOT tracker versus BLORT. The green line is the object pose from
MH3DOT and the yellow line corresponds to BLORT.

errors in the ‘coffee box’ complex background sequence, whilst it shows large
errors in the ‘mug’ simpler background sequence. In contrast, our hybrid method
performs consistently in both image sequences. BLORT error results are slightly
better than our MH3DOT method in the X and Z translation. However, BLORT
severely suffers from increased errors in angular rotations. Furthermore, the pose
results of ViSP, and to some extent BLORT, indicate increased error in rotation,
which under certain conditions, is not desirable for robot vision applications. We
postulate that the superiority of our MH3DOT method may be due to the fact
that use of an interpretation process (Section 3.2), constrains this type of pose
errors. That is, do not propagate into inferences for subsequent frames.

An example from the ‘mug’ sequence (three frames), with tracking superim-
posed, is provided in Fig. 5. From the sequences tested we can conclude that
methods with multi-hypothesis generation and maintenance (MH3DOT green
line in Fig. 5) track with good accuracy the target objects. We also observed
that for the used case Particle filter tracker (BLORT yellow line in Fig. 5) at
some point in time they converge to an erroneous result.

As evidenced in Fig. 5, by frame 869 BLORT pose estimation deteriorates,
whilst MH3DOT remains consistent. Thus, the target object will no longer be
tracked after some time has elapsed within the image sequences. This becomes
even worse for single hypothesis implementations. In said cases, tracking fails to
recover the target, and the object remains as ‘lost’ without successful recovery
until the end of the sequence. This explains (in-part) the increased errors re-
ported in Table 1. This is not the case with our MH3DOT approach and thus
the reported error is smaller.

5 Conclusions

This paper presents a model based approach to tracking the pose of an object
in 3D based on 2D derived contours and edges, using a monocular camera. To
enhance the performance of our method under occlusions and other artifacts,
we have established a generation of multiple hypothesis, in the form of rendered
objects. For this purpose, we have formulated an efficient number of hypothe-
ses criterion within our framework’s implementation. Experimental results have



demonstrated that our method achieves good pose tracking resolution at a rel-
atively fast frame rate. The results have indicated that our tracking method
exhibits better performance over the tested methods with reported parameters.

Further research is required to establish potential cases under which the
method may not work robustly. However, in the current challenges posed by the
image sequences used, the algorithm has shown to operate robustly even under
situations where environmental (e.g. lighting, clutter) and motion conditions
(e.g. motion, scale changes) are realistic. Finally, the criterion for efficient number
of hypotheses will constitute a topic for further study.
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