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Abstract. One of the key problems in model-based reinforcement learn-
ing is balancing exploration and exploitation. Another is learning and
acting in large relational domains, in which there is a varying number of
objects and relations between them. We provide a solution to exploring
large relational Markov decision processes by developing relational exten-
sions of the concepts of the Explicit Explore or Exploit (E3) algorithm.
A key insight is that the inherent generalization of learnt knowledge in
the relational representation has profound implications also on the ex-
ploration strategy: what in a propositional setting would be considered a
novel situation and worth exploration may in the relational setting be an
instance of a well-known context in which exploitation is promising. Our
experimental evaluation shows the effectiveness and benefit of relational
exploration over several propositional benchmark approaches on noisy
3D simulated robot manipulation problems.

1 Introduction

Acting optimally under uncertainty is a central problem of artificial intelligence.
In reinforcement learning, an agent’s learning task is to find a policy for action
selection that maximizes its reward over the long run. Model-based approaches
learn models of the underlying Markov decision process from the agent’s inter-
actions with the environment, which can then be analyzed to compute optimal
plans. One of the key problems in reinforcement learning is the exploration-
exploitation tradeoff, which strives to balance two competing types of behavior
of an autonomous agent in an unknown environment: the agent can either make
use of its current knowledge about the environment to maximize its cumula-
tive reward (i.e., to exploit), or sacrifice short-term rewards to gather informa-
tion about the environment (i.e., to explore) in the hope of increasing future
long-term return, for instance by improving its current world model. This explo-
ration/exploitation tradeoff has received a lot of attention in propositional and
continuous domains. Several powerful technique have been developed such as E3

[14], Rmax [3] and Bayesian reinforcement learning [19].
Another key problem in reinforcement learning is learning and acting in large

relational domains, in which there is a varying number of objects and relations
among them. Nowadays, relational approaches become more and more impor-
tant [9]: information about one object can help the agent to reach conclusions



about other, related objects. Such relational domains are hard – or even impos-
sible – to represent meaningfully using an enumerated state space. For instance,
consider a hypothetical household robot which just needs to be taken out of the
shipping box, turned on, and which then explores the environment to become
able to attend its cleaning chores. Without a compact knowledge representation
that supports abstraction and generalization of previous experiences to the cur-
rent state and potential future states, it seems to be difficult – if not hopeless
– for such a “robot-out-of-the-box” to explore one’s home in reasonable time.
There are too many objects such as doors, plates and water-taps. For instance,
after having opened one or two water-taps in bathrooms, the priority for explor-
ing further water-taps in bathrooms, and also in other rooms such as the kitchen,
should be reduced. This is impossible to express in a propositional setting where
we would simply encounter a new and therefore non-modelled situation.

So far, however, the important problem of exploration in stochastic relational
worlds has received surprisingly little attention. This is exactly the problem we
address in the current paper. Simply applying existing, propositional exploration
techniques is likely to fail: what in a propositional setting would be considered
a novel situation and worth exploration may in the relational setting be an in-
stance of a well-known context in which exploitation is promising. This is the
key insight of the current paper: the inherent generalization of learnt knowledge
in the relational representation has profound implications also on the exploration
strategy. Consequently, we develop relational exploration strategies in this pa-
per. More specifically, our work is inspired by Kearns and Singh’s seminal ex-
ploration technique E3 (Explicit Explore or Exploit, discussed in detail below).
By developing a similar family of strategies for the relational case and inte-
grating it into the state-of-the-art model-based relational reinforcement learner
PRADA [16], we provide a practical solution to the exploration problem in rela-
tional worlds. Based on actively generated training trajectories, the exploration
strategy and the relational planner together produce in each round a learned
world model and in turn a policy that either reduces uncertainty about the en-
vironment, i.e., improves the current model, or exploits the current knowledge
to maximize utility of the agent. Our extensive experimental evaluation in a 3D
simulated complex desktop environment with an articulated manipulator and
realistic physics shows that our approaches can solve tasks in complex worlds
where non-relational methods face severe efficiency problems.

We proceed as follows. After touching upon related work, we review back-
ground work. Then, we develop our relational exploration strategies. Before con-
cluding, we present the results of our extensive experimental evaluation.

2 Related Work

Several exploration approaches such as E3 [14], Rmax [3] and extensions [13,
10] have been developed for propositional and continuous domains, i.e., assum-
ing the environment to be representable as an enumerated or vector space. In
recent years, there has been a growing interest in using rich representations
such as relational languages for reinforcement learning (RL). While traditional



RL requires (in principle) explicit state and action enumeration, these symbolic
approaches seek to avoid explicit state and action enumeration through a sym-
bolic representation of states and actions. Most work in this context has focused
on model-free approaches estimating a value function and has not developed
relational exploration strategies. Essentially, a number of relational regression
algorithms have been developed for use in these relational RL systems such as
relational regression trees [8] or graph kernels and Gaussian processes [7]. Kerst-
ing and Driessens [15] have proposed a relational policy gradient approach. These
approaches use some form of ε-greedy strategy to handle explorations; no special
attention has been paid to the exploration-exploitation problem as done in the
current paper. Driessens and Džeroski [6] have proposed the use of “reasonable
policies” to provide guidance, i.e., to increase the chance to discover sparse re-
wards in large relational state spaces. This is orthogonal to exploration. Ramon
et al. [20] presented an incremental relational regression tree algorithm that is
capable of dealing with concept drift and showed that it enables a relational Q-
learner to transfer knowledge from one task to another. They, however, do not
learn a model of the domain and, again, relational exploration strategies were
not developed. Croonenborghs et al. [5] learn a relational world model online
and additionally use lookahead trees to give the agent more informed Q-values
by looking some steps into the future when selecting an action. Exploration is
based on sampling random actions instead of informed exploration. Walsh [23]
provides the first principled investigation into the exploration-exploitation trade-
off in relational domains and establishes sample complexity bounds for specific
relational MDP learning subproblems. In contrast, we learn full domain models
and use them online to adapt our relational exploration strategies.

There is also an increasing number of (approximate) dynamic programming
approaches for solving relational MDPs, see e.g. [2, 21]. In contrast to the current
paper, however, they assume a given model of the world. Recently, Lang and
Toussaint [17] and Joshi et al. [12] have shown that successful planning typically
involves only a small subset of relevant objects respectively states and how to
make use of this fact to speed up symbolic dynamic programming significantly.
A principled approach to exploration, however, has not been developed.

3 Background on MDPs, Exploration, and Relational
Worlds

A Markov decision process (MDP) is a discrete time stochastic control process
used to model the interaction of an agent with its environment. At each time-
step, the process is in one of a fixed set of discrete states S and the agent can
choose an action from a set A. The conditional transition probabilities P (s′|a, s)
specify the distribution over successor states when executing an action in a given
state. The agent receives rewards in states according to a function R : S → R.
The goal is to find a policy π : S → A specifying which action to take in
a given state in order to maximize the future rewards. For a discount factor
0 < γ < 1, the value of a policy π for a state s is defined as the sum of
discounted rewards V π(s) = E[

∑
t γ

tR(st) | s0 = s, π]. In our context, we do



not know the transition probabilities P (s′|a, s) so that we face the problem of
reinforcement learning (RL). We pursue a model-based approach: we estimate
P (s′|a, s) from our experiences and compute (approximately) optimal policies
based on the estimated model. The quality of these policies depends on the
accuracy of this estimation. We need to ensure that we learn enough about the
environment in order to be able to plan for high-value states (explore). At the
same time, we have to ensure not to spend too much time in low-value parts of
the state space (exploit). This is known as the exploitation/exploration-tradeoff.

Kearns and Singh’s E3 (Explicit Explore or Exploit) algorithm [14] provides
a near-optimal model-based solution to the exploitation/exploration problem. It
distinguishes explicitly between exploitation and exploration phases. The central
concept are known states where all actions have been observed sufficiently often.
If E3 enters an unknown state, it takes the action it has tried the fewest times
there (“direct exploration”). If it enters a known state, it tries to calculate a
high-value policy within an MDP built from all known states (where its model
estimates are sufficiently accurate). If it finds such a policy which stays with high
probability in the set of known states, this policy is executed (“exploitation”).
Otherwise, E3 plans in a different MDP in which the unknown states are assumed
to have very high value (“optimism in the face of uncertainty”), ensuring that
the agent explores unknown states efficiently (“planned exploration”).

One can prove that with high probability E3 performs near optimally for all
but a polynomial number of time-steps. The theoretical guarantees of E3 and
similar algorithms such as Rmax are strong. In practice, however, the number of
exploratory actions becomes huge so that in case of large state spaces, such as in
relational worlds, it is unrealistic to meet the theoretical thresholds of state visits.
To address this drawback, variants of E3 for factored but propositional MDP
representations have been explored [13, 10]. Our evaluations will include variants
of factored exploration strategies (Pex and opt-Pex) where the factorization is
based on the grounded relational formulas. However, such factored MDPs still do
not generalize over objects. Relational worlds can be represented more compactly
using relational MDPs. The state space S of a relational MDP (RMDP) has a
relational structure defined by predicates P and functions F , which yield the
set of ground atoms with arguments taken from the set of domain objects O.
The action space A is defined by atoms A with arguments from O. In contrast
to ground atoms, abstract atoms contain logical variables as arguments. We will
speak of grounding an abstract formula ψ if we apply a substitution σ that maps
all of the variables appearing in ψ to objects in O.

A compact relational transition model P (s′|a, s) uses formulas to abstract
from concrete situations and object identities. The principle ideas of relational
exploration we develop in this paper work with any type of relational model. In
this paper, however, we employ noisy indeterministic deictic (NID) rules [18] to
illustrate and empirically evaluate our ideas. A NID rule r is given as

ar(X ) : φr(X ) →


pr,1 : Ωr,1(X )

...
pr,mr

: Ωr,mr
(X )

pr,0 : Ωr,0

, (1)



where X is a set of logic variables in the rule (which represent a (sub-)set of
abstract objects). The rule r consists of preconditions, namely that action ar
is applied on X and that the abstract state context φr is fulfilled, and mr+1
different abstract outcomes with associated probabilities pr,i > 0,

∑
i=0 pr,i = 1.

Each outcome Ωr,i(X ) describes which atoms “change” when the rule is applied.
The context φr(X ) and outcomes Ωr,i(X ) are conjunctions of literals constructed
from the literals in P as well as equality statements comparing functions from
F to constant values. The so-called noise outcome Ωr,0 subsumes all possible
action outcomes which are not explicitly specified by one of the other Ωr,i. The
arguments of the action a(Xa) may be a true subset Xa⊂X of the variables X
of the rule. The remaining variables are called deictic references DR = X \ Xa
and denote objects relative to the agent or action being performed.

So, how do we apply NID rules? Let σ denote a substitution that maps
variables to constant objects, σ : X → O. Applying σ to an abstract rule r(X )
yields a grounded rule r(σ(X )). We say a grounded rule r covers a state s and a
ground action a if s |= φr and a = ar. Let Γ be our set of rules and Γ (s, a) ⊂ Γ
the set of rules covering (s, a). If there is a unique covering rule r(s,a) ∈ Γ (s, a),
we use it to model the effects of action a in state s. If no such rule exists (including
the case that more one rule covers the state-action pair), we use a noisy default
rule rν which predicts all effects as noise. The semantics of NID rules allow one to
efficiently plan in relational domains, i.e. to find a “satisficing” action sequence
that will lead with high probability to states with large rewards. In this paper,
we use the PRADA algorithm [16] for planning in grounded relational domains.
PRADA converts NID rules into dynamic Bayesian networks, predicts the effects
of action sequences on states and rewards by means of approximate inference and
samples action sequences in an informed way. PRADA copes with different types
of reward structures, such as partially abstract formulas or maximizing derived
functions. We learn NID rules from the experiences E = {(st, at, st+1)T−1t=0 } of an
actively exploring agent, using a batch algorithm that trades off the likelihood
of these triples with the complexity of the learned rule-set. E(r) = {(s, a, s′) ∈
E | r = r(s,a)} are the experiences which are uniquely covered by a learned rule
r. For more details, we refer the reader to Pasula et al. [18].

4 Exploration in Relational Domains

We first discuss the implications of a relational knowledge representation for
exploration on a conceptual level. We adopt a density estimation view to pinpoint
the differences between propositional and relational exploration (Sec. 4.1). This
conceptual discussion opens the door to a large variety of possible exploration
strategies – we cannot test all such approaches within this paper. Thus, we focus
on specific choices to estimate novelty and hence of the respective exploration
strategies (Sec. 4.2), which we found effective as a first proof of concept.

4.1 A Density Estimation View on Known States and Actions

The theoretical derivations of the non-relational near-optimal exploration algo-
rithms E3 and Rmax show that the concept of known states is crucial. On the



one hand, the confidence in estimates in known states drives exploitation. On the
other hand, exploration is guided by seeking for novel (yet unknown) states and
actions. For instance, the direct exploration phase in E3 chooses novel actions,
which have been tried the fewest; the planned exploration phase seeks to visit
novel states, which are labeled as yet unknown.

In the case of the original E3 algorithm (and Rmax and similar methods)
operating in an enumerated state space, states and actions are considered known
based directly on the number of times they have been visited. In relational
domains, there are two reasons for why we should go beyond simply counting
state-action visits to estimate the novelty of states and actions:

1. The size of the state space is exponential in the number of objects. If we base
our notion of known states directly on visitation counts, then the overwhelm-
ing majority of all states will be labeled yet-unknown and the exploration
time required to meet the criteria for known states of E3 even for a small
relevant fraction of the state space becomes exponential in large domains.

2. The key benefit of relational learning is the ability to generalize over yet
unobserved instances of the world based on relational abstractions. This
implies a fundamentally different perspective on what is novel and what is
known and permits qualitatively different exploration strategies compared
to the propositional view.

A constructive approach to pinpoint the differences between propositional
and relational notions of exploration, novelty and known states is to focus on
a density estimation view. This is also inspired by the work on active learning
which typically selects points that, according to some density model of previ-
ously seen points, are novel (see, e.g., [4] where the density model is an implicit
mixture of Gaussians). In the following we first discuss different approaches to
model a distribution of known states and actions in a relational setting. These
methods estimate which relational states are considered known with some useful
confidence measures according to our experiences E and world model M.

Propositional: Let us first consider briefly the propositional setting from a
density estimation point of view. We have a finite enumerated state space S and
action space A. Assume our agent has so far observed the set of state transitions
E = {(st, at, st+1)}T−1t=1 . This translates directly to a density estimate

P (s) ∝ cE(s) , with cE(s) =
∑

(se,ae,s′e)∈E
I(se = s) , (2)

where cE(s) counts the number of occasions state s has been visited in E (in the
spirit of [22]) and I(·) is the indicator function which is 1 if the argument eval-
uates to true and 0 otherwise. This density implies that all states with low P (s)
are considered novel and should be explored, as in E3. There is no generalization
in this notion of known states. Similar arguments can be applied on the level of
state-action counts and the joint density P (s, a).

Predicate-based: Given a relational structure with the set of logical pred-
icates P, an alternative approach to describe what are known states is based
on counting how often a ground or abstract predicate has been observed true
or false in the experiences E (all statements equally apply to functions F , but



we neglect this case here). First, we consider grounded predicates p ∈ PG with
arguments taken from the domain objects O. This leads to a density estimate

Pp(s) ∝ cp(s) I(s |= p) + c¬p(s) I(s |= ¬p) (3)

with cp(s) :=
∑

(se,ae,s′e)∈E
I(se |= p).

Each p implies a density Pp(s) which counts how often p has the same truth
values in s and in experienced states. We take the product to combine all Pp(s).
This implies that a state is considered familiar (with non-zero P (s)) if each
predicate that is true (false) in this state has been observed true (false) before.
We will use this approach for our planned exploration strategy (Sec. 4.2). We can
follow the same approach for partially grounded predicates PPG. For p ∈ PPG
and a state s, we examine whether there are groundings of the logical variables
in p such that s covers p. More formally, we replace s |= p by ∃σ : s |= σ(p). E.g.,
we may count how often the blue ball was on top of some other object. If this
was rarely the case this implies a notion of novelty which guides exploration.

Context-based: Assume that we are given a finite set Φ of contexts, which
are formulas of abstract predicates and functions. While many relational knowl-
edge representations have some notion of context or rule precondition, in our
case these may correspond to the set of NID rule contexts {φr}. These are learnt
from the experiences E , which have specifically been optimized to be a compact
context representation that covers the experiences and allows for the prediction
of action effects (cf. Sec. 3). Analogous to the above, given a set of such formulas
we may consider the density

Pφ(s) ∝
∑
φ∈Φ cE(φ) I(∃σ : s |= σ(φ)) (4)

with cE(φ) =
∑

(se,ae,s′e)∈E
I(∃σ : se |= σ(φ)).

cE(φ) counts in how many experiences E the context φ was covered with arbi-
trary groundings. Intuitively, the context of the NID rules may be understood
as describing situation classes based on whether the same predictive rules can
be applied. Taking this approach, states are considered novel if they are not
covered by any existing context (Pφ(s) = 0) or covered by a context that has
rarely occurred in E (Pφ(s) is low). That is, the description of novelty which
drives exploration is lifted to the level of abstraction of these relational contexts.
Similarly, we formulate a density estimation over states and actions based on
the set of NID rules, where each rule defines a state-action context,

Pr(s, a) ∝
∑
r∈Γ cE(r) I(r = rs,a), with cE(r) := |E(r)|, (5)

which is based on counting how many experiences are covered by the unique
covering rule rs,a for a in s. Recall that E(r) are the experiences which are
covered by r. Thus, the more experiences the corresponding unique covering rule
r(s,a) covers the larger is Pr(s, a) and it can be seen as a measure of confidence
in r. We will use Pr(s, a) to guide direct exploration below.

Distance-based: As mentioned in the related work discussion, different
methods to estimate the similarity of relational states exist. These can be used



for relational density estimation (in the sense of 1-class SVMs) which, when
applied in our context, would readily imply alternative notions of novelty and
thereby exploration strategies. To give an example, [7] and [11] present relational
reinforcement learning approaches which use relational graph kernels to estimate
the similarity of relational states. Applying such a method to model P (s) from
E would imply that states are considered novel (with low P (s)) if they have
a low kernel value (high “distance”) to previous explored states. For a given
state s, we directly define a measure of distance to all observed data, d(s) =
min(se,ae,s′e)∈E d(s, se), and set

Pd(s) ∝
1

d(s) + 1
. (6)

Here, d(s, s′) can be any distance measure, for instance based on relational graph
kernels. We will use a similar but simplified approach as part of a specific direct
exploration strategy on the level of Pd(s, a), as described in detail in Sec. 4.2. In
our experiments, we use a simple distance based on least general unifiers.

All three relational density estimation techniques emphasize different aspects
and we combine them in our algorithms.

4.2 Relational Exploration Algorithms

The density estimation approaches discussed above open a large variety of pos-
sibilities for concrete exploration strategies. In the following, we derive model-
based relational reinforcement learning algorithms which explicitly distinguish
between exploration and exploitation phases in the sense of E3. Our methods are
based on simple, but empirically effective relational density estimators. We are
certain that more elaborate and efficient exploration strategies can be derived
from the above principles in the future. Our algorithms perform the following
general steps: (i) In each step they first adapt the relational model M with the
set of experiences E . (ii) Based onM, s and E , they select an action a – we focus
on this below. (iii) The action a is executed, the resulting state s′ observed and
added to the experiences E , and the process repeated.

Our first algorithm transfers the general E3 approach (distinguishing be-
tween exploration and exploitation based on whether the current state is fully
known) to the relational domain to compute actions. The second tries to exploit
more optimistically, even when the state is not known or only partially known.
Both algorithms are based on a set of subroutines which instantiate the ideas
mentioned above and which we describe first:

plan(world model M, reward function τ , state s0): Returns the first action of
a plan of actions that maximizes τ . Typically, τ is expressed in terms of log-
ical formulas, describing goal situations to which a reward of 1 is associated.
If the planner estimates a maximum expected reward close to zero (i.e., no
good plan is found), it returns a 0 instead of the first action. In this paper,
we employ NID rules as M and use the PRADA algorithm for planning.

isKnown(world model M, state s): s is known if the estimated probabilities
P (s, a) of all actions a are larger than some threshold. We employ the rule-
context based density estimate Pr(s, a) (Eq. 5).



Algorithm 1 Rex – Action Computation

Input: World model M, Reward function τ , State s0, Experiences E
Output: Action a
1: if isKnown(M, s0) then
2: a = plan(M, τ , s0) B Try to exploit
3: if a 6= 0 then
4: return a B Exploit succeeded
5: end if
6: τexplore = getPlannedExplorationReward(M, E)
7: a = plan(M, τexplore, s0) B Try planned exploration
8: if a 6= 0 then
9: return a B Planned exploration succeeded

10: end if
11: end if
12: w = getDirectExplorationWeights(M, E , s0) B Sampling weights for actions
13: a = sample(w) B Direct exploration (without planning)
14: return a

isPartiallyKnown(world model M, reward function τ , state s): In contrast to
before, we only consider relevant actions. These refer to objects which ap-
pear explicitly in the reward description or are related to them in s by some
binary predicate.

getPlannedExplorationReward(world model M, experiences E): Returns a re-
ward function for planned exploration, expressed in terms of logical formulas
as for plan, describing goal situations worth for exploration. We follow the
predicate-based density estimation view (Eq. (3)) and set the reward func-
tion to 1

Pp(s)
.

getDirectExplorationWeights(world model M, experiences E , state s): Returns
weights according to which an action is sampled for direct exploration. Here,
the two algorithms use different heuristics:
(i) Rex sets the weights for actions a with minimum value |E(rs,a)| to 1 and
for all others to 0, thereby employing Pr(s, a). This combines E3 (choosing
the action with the fewest “visits”) with relational generalization (defining
“visits” by means of confidence in abstract rules).
(ii) opt-Rex combines three scores to decide on direct exploration weights.
The first score is inverse proportional to Pr(s, a). The second is inverse pro-
portional to the distance-based density estimation Pd(s, a) (Eq. 6). The third
score is an additional heuristic to increase the probability of relevant actions
(with the same idea as in partially known states, that we care more about
the supposedly relevant parts of the action space).

These subroutines are the basic building blocks for the two relational exploration
algorithms Rex and opt-Rex that we discuss now in turn.

Rex (Relational Explicit Explore or Exploit) (Algorithm 1) Rex lifts
the E3 planner to relational exploration and uses the same phase order as E3.
If the current state is known, it tries to exploit M. In contrast to E3, Rex
also plans through unknown states as it is unclear how to efficiently build and



Algorithm 2 opt-Rex – Action Computation

Input: World model M, Reward function τ , State s0, Experiences E
Output: Action a
1: a = plan(M, τ , s0) B Try to exploit
2: if a 6= 0 then
3: return a B Exploit succeeded
4: end if
5: if isPartiallyKnown(M, τ , s0) then
6: τexplore = getPlannedExplorationReward(M, E)
7: a = plan(M, τexplore, s0) B Try planned exploration
8: if a 6= 0 then
9: return a B Planned exploration succeeded

10: end if
11: end if
12: w = getDirectExplorationWeights(M, E , s0) B Sampling weights for actions
13: a = sample(w) B Direct exploration (without planning)
14: return a

exclusively use an MDP of known relational states. However, in every state
only sufficiently known actions are taken into account. In our experiments, for
instance, our planner PRADA achieves this by only considering actions with
unique covering rules in a given state. If exploitation fails, an exploration goal
is set up for planned exploration. In case planned exploration fails as well or the
current state is unknown, the action with the lowest confidence is carried out
(similarly, as E3 chooses the action which was performed the least often in the
current state).

opt-Rex (Optimistic Rex) (Algorithm 2) opt-Rex modifies Rex according
to the intuition that there is no need to understand the world dynamics to
full extent: rather it makes sense to focus on the relevant parts of the state
and action space. opt-Rex exploits the current knowledge optimistically to
plan for the goal. For a given state s0, it tries immediately to come up with
an exploitation plan. If this fails, it checks whether s0 is partially known, i.e.,
whether the world model M can predict the actions which are relevant for the
reward τ . If the state s0 is partially known, planned exploration is tried. If this
fails or s0 is partially unknown, direct exploration is undertaken, with action
sampling weights as described above.

5 Evaluation

Our intention here is to compare propositional and relational techniques for ex-
ploring relational worlds. More precisely, we investigate the following questions:

– Q1: Can relational knowledge improve exploration performance?
– Q2: How do propositional and relational explorers scale with the number of

domain objects?
– Q3: Can relational explorers transfer knowledge to new situations, objects

and tasks?



Fig. 1. In our experiments, a robot has to explore a 3D simulated desktop environment
with cubes, balls and boxes of different sizes and colors to master various tasks.

To do so, we compare five different methods inspired by E3 based on proposi-
tional or abstract symbolic world models. In particular, we learn (propositional
or abstract) NID rules after each new observation from scratch using the algo-
rithm of Pasula et al. [18] and employ PRADA [16] for exploitation or planned
exploration. All methods deem an action to be known in a state if the confidence
in its covering rule is above a threshold ς. Instead of deriving ς from the E3 equa-
tions which is not straightforward and will lead to overly large thresholds (see
[10]), we set it heuristically such that the confidence is high while still being able
to explore the environments of our experiments within a reasonable number of
actions (< 100).

Pex (propositional E3) is a variant of E3 based on propositional NID rules
(with ground predicates and functions). While it abstracts over states using the
factorization of rules, it cannot transfer knowledge to unseen objects. opt-Pex
(optimistic Pex) is similar, but always tries to exploit first, independently of
whether the current state is known or not. Rex and opt-Rex (cf. Sec. 4.2)
use abstract relational NID rules for exploration and exploitation. In addition,
we investigate a relational baseline method rand-Rex (Relational exploit or
random) which tries to exploit first (being as optimistic as opt-Rex) and if this
is impossible produces a random action.

Our test domain is a simulated complex desktop environment where a robot
manipulates cubes, balls and boxes scattered on a table (Fig. 1). We use a 3D
rigid-body dynamics simulator (ODE) that enables a realistic behavior of the
objects. For instance, piles of objects may topple over or objects may even fall
off the table (in which case they become out of reach for the robot). Depending
on their type, objects show different characteristics. For example, it is almost
impossible to successfully put an object on top of a ball, and building piles with
small objects is more difficult. The robot can grab objects, try to put them
on top of other objects, in a box or on the table. Boxes have a lid; special ac-
tions may open or close the lid; taking an object out of a box or putting it
into it is possible only when the box is opened. The actions of the robot are af-
fected by noise so that resulting object piles are not straight-aligned. We assume
full observability of triples (s, a, s′) that specify how the world changed when
an action was executed in a certain state. We represent the data with predi-
cates cube(X), ball(X), box(X), table(X), on(X,Y ), contains(X,Y ), out(X),
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Fig. 2. Experiment 1: Unchanging Worlds of Cubes and Balls. A run consists of 5
subsequent rounds with the same start situations and goal objects. The robot starts
with no knowledge in the first round. The success rate and the mean estimators of the
action numbers with standard deviations over 50 runs are shown (5 start situations,
10 seeds).

inhand(X), upright(X), closed(X), clear(X) ≡ ∀Y.¬on(Y,X), inhandNil() ≡
¬∃X.inhand(X) and functions size(X), color(X) for state descriptions and
grab(X), puton(X), openBox(X), closeBox(X) and doNothing() for actions.
If there are o objects and f different object sizes and colors in a world, the state

space is huge with f2o22o
2+7o different states (not excluding states one would

classify as “impossible” given some intuition about real world physics). This
points at the potential of using abstract relational knowledge for exploration.

We perform four increasingly complex series of experiments1 where we pursue
the same or similar tasks over multiple rounds. In all experiments the robot starts
from zero knowledge (E = ∅) in the first round and carries over experiences to
the next rounds. In each round, we execute a maximum of 100 actions. If the
task is still not solved by then, the round fails. We report the success rates and
the action numbers to which failed trials contribute with the maximum number.

Unchanging Worlds of Cubes and Balls: The goal in each round is to
pile two specific objects, on(obj1, obj2). To collect statistics we investigate worlds
of varying object numbers and for each object number, we create five worlds
with different objects. For each such world, we perform 10 independent runs with
different random seeds. Each run consists of 5 rounds with the same goal instance

1 The website http://www.user.tu-berlin.de/lang/explore/ provides videos of ex-
emplary rounds as well as pointers to the code of our simulator, the learning algo-
rithm of NID rules and PRADA.
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Fig. 3. Experiment 2: Unchanging Worlds of Boxes. A run consists of 5 subsequent
rounds with the same start situations and goal objects. The robot starts with no
knowledge in the first round. The success rate and the mean estimators of the action
numbers with standard deviations over 50 runs are shown (5 start situations, 10 seeds).

and the same start situation. The results presented in Fig. 2 show that already
in the first round the relational explorers solve the task with significantly higher
success rates and require up to 8 times fewer actions than the propositional
explorers. opt-Rex is the fastest approach which we attribute to its optimistic
exploitation bias. In subsequent rounds, the relational methods use previous
experiences much better, solving those in almost minimal time. In contrast, the
action numbers of the propositional explorers fall only slowly.

Unchanging Worlds with Boxes: We keep the task and the experimen-
tal setup as before, but in addition the worlds contain boxes, resulting in more
complex action dynamics. In particular, some goal objects are put in boxes in
the beginning, necessitating more intense exploration to learn how to deal with
boxes. Fig. 3 shows that again the relational explorers have superior success
rates, require significantly fewer actions and reuse their knowledge effectively in
subsequent rounds. While the performance of the propositional planners dete-
riorates with increasing numbers of objects, opt-Rex and Rex scale well. In
worlds with many objects, the cautious exploration of Rex has the effect that
it requires about one third more actions than opt-Rex in the first round, but
performs better in subsequent rounds due to the previous thorough exploration.

After the first two experiments we conclude that the usage of relational
knowledge improves exploration (question Q1) and relational explorers scale
better with the number of objects than propositional explorers (question Q2).

Generalization to New Worlds: In this series of experiments, the objects,
their total numbers and the specific goal instances are different in each round
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Fig. 4. Experiment 3: Generalization to New Worlds. A run consists of a problem
sequence of 10 subsequent rounds with different objects, numbers of objects (6 - 10
cubes/balls/boxes + table) and start situations in each round. The robot starts with
no knowledge in the first round. The success rate and the mean estimators of the action
numbers with standard deviations over 100 runs are shown (10 sequences, 10 seeds).

(worlds of 7, 9 and 11 objects). We create 10 problem sequences (each with 10
rounds) and perform 10 trials for each sequence with different random seeds.
As Fig.4 shows the performance of the relational explorers is good from the
beginning and becomes stable at a near-optimal level after 3 rounds. This answers
the first part of question Q3: relational explorers can transfer their knowledge
to new situations and objects. In contrast, the propositional explorers cannot
transfer the knowledge to different worlds and thus neither their success rates
nor their action numbers improve in subsequent rounds. Similarly as before,
opt-Rex requires less than half of the actions of Rex in the first round due to
its optimistic exploitation strategy; in subsequent rounds, Rex is on par as it
has sufficiently explored the system dynamics before.

Generalization to New Tasks: In our final series of experiments, we per-
form in succession three tasks of increasing difficulty: piling two specific objects
in simple worlds with cubes and balls (as in Exp. 1), in worlds extended by boxes
(as in Exp. 2 and 3) and building a tower on top of a box where the required
objects are partially contained in boxes in the beginning. Each task is performed
for three rounds in different worlds with different goal objects. The results pre-
sented in Fig. 5 confirm the previous results: the relational explorers are able to
generalize over different worlds for a fixed task, while the propositional explorers
fail. Beyond that, again in contrast to the propositional explorers, the relational
explorers are able to transfer the learned knowledge from simple to difficult tasks
in the sense of curriculum learning [1], answering the second part of question Q3.
To see that, one has to compare the results of round 4 (where the second task of
piling two objects in worlds of boxes is given the first time) with the results of
round 1 in Experiments 2 and 3. In the latter, no experience from previous tasks
is available and Rex requires 43.0 − 53.8 ±2.5 actions. In contrast, here it can
reuse the knowledge of the simple task (rounds 1-3) and needs about 29.9± 2.3
actions. It is instructive to compare this with opt-Rex which performs about
the same or even slightly better in the first rounds of Exp. 2 and 3: here, it
can fall victim to its optimistic bias which is not appropriate given the changed
world dynamics due to the boxes. As a final remark, the third task (rounds 7-9)
was deliberately chosen to be very difficult to test the limits of the different
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Fig. 5. Experiment 4: Generalization to New Tasks. A run consists of a problem se-
quence of 9 subsequent rounds with different objects, numbers of objects (6 - 10
cubes/balls/boxes + table) and start situations in each round. The tasks are changed
between round 3 and 4 and round 6 and 7 to more difficult tasks. The robot starts
with no knowledge in the first round. The success rate and the mean estimators of the
action numbers with standard deviations over 100 runs are shown (10 sequences, 10
seeds).

approaches. While the propositional planners almost always fail to solve it, the
relational planners achieve 5 to 25 times higher success rates.

6 Conclusions

Efficient exploration in relational worlds is an interesting problem that is fun-
damental to many real-life decision-theoretic planning problems, but has only
received little attention so far. We have approached this problem by proposing
relational exploration strategies that borrow ideas from efficient techniques for
propositional and continuous MDPs. A few principled and practical issues of
relational exploration have been discussed, and insights are drawn by relating
it to its propositional counterpart. The experimental results show a significant
improvement over established results for solving difficult, highly stochastic plan-
ning tasks in a 3D simulated complex desktop environment, even in a curriculum
learning setting where different problems have to be solved one after the other.

There are several interesting avenues for future work. One is to investigate
incremental learning of rule-sets. Another is to explore the connection between
relational exploration and transfer learning. Finally, one should start to explore
statistical relational reasoning and learning techniques for the relational density
estimation problem implicit in exploring relational worlds.
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