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Abstract. We present initial results of an application of statistical re-
lational learning using ProbLog to a robotic manipulation task modeled
using affordances. Affordances encompass the action possibilities on an
object, so previous works have presented models for just one object. How-
ever, in scenarios where there are multiple objects that interact between
each other, it is very useful to consider the advantages of the statistical
relational learning.

1 Introduction

Robotics is a vast and active area seeking to develop mobile, physical agents
capable of reasoning, learning and manipulating their environment. Early ap-
proaches such as in Shakey used logical representations such as STRIPS, and
many more approaches use various other kinds of symbolic knowledge represen-
tation [2, 9]. In addition to symbolic (or, semantic) methodologies, the physical
aspect of robots requires dealing with various kinds of uncertainty typically not
handled by symbolic formalisms. These aspects include interpreting noisy sen-
sors, processing image streams from cameras, controlling noisy physical actuators
for manipulation, and in general, solving many grounding and anchoring prob-
lems. Therefore, much of current robotics research is concerned with probabilistic
reasoning and learning techniques [10] instead of symbolic representations. Sta-
tistical relational learning (SRL) [7, 1] combines logical representations, proba-
bilistic reasoning and machine learning. Several recent works have explored the
use of SRL and have shown how to effectively combine probabilistic and logical
methods in robotics domains, e.g. see the kitchen scenario in [3].

We outline initial results of using SRL, in particular ProbLog [8], in a ma-
nipulation scenario with an iCub robot. We extend recent results in imitation
learning in which (video) demonstrations of object manipulation (e.g. by a hu-
man) are used to learn affordances [4–6]. Affordances are a way to structure the
robot’s environment in terms of what it can do with specific objects. We extend
this model by proposing an initial approach towards generalization, using proba-
bilistic logical affordance models. This can be done by the use of SRL in a multi-
ple object scenario, which allows for the generalization over objects and actions
by allowing the use of already learned one and two object models together with



known logical rules to be used for inference. This allows for a greater flexibility
in modeling complex multi-object environments for robot manipulation than the
previous approaches [4–6] of modeling the scene with a specific Bayesian Net-
work (BN). Next, we explain the one-object case and in Section 3 we discuss the
learning of manipulation skills. Section 4 describes the relational extension and
initial results after which we conclude with planned extensions, mostly carried
out in the context of the EU-project on Flexible Skill Acquisition and Intuitive
Robot Tasking for Mobile Manipulation in the Real World (First-MM).

2 Affordance-based Models

We first discuss the affordance learning setting of [4–6]. Affordances capture
action opportunities (e.g. what can one do with an object? ) to structure the

Fig. 1. Affordances model: rela-
tions between objects, actions, ef-
fects [5, 6].

environment. The typical setup involves a
robot (with an arm) and a table with physi-
cal objects (cubes, balls, etc.). Three main as-
pects of the approach are actions (A), object
properties (O) and effects (E). These, and
their relationships, are presented in Figure 1.
Actions are physical manipulation skills that
can be applied to objects and include grab-
bing (and releasing), pushing (in a plane
away from the robot), and tapping (side-
ways). Object properties are aspects that can
be measured from perceptual devices (such
as vision) and involve color, shape, and size.
Effects are measurable features that change
once an action is performed, e.g. the veloc-
ity of the hand, the velocity (or distance be-
tween) between the hand and the object, etc. Depending on which data is avail-
able to the robot and which aspects need to be predicted, the model can also be
used for planning and other tasks, see the table in Figure 1.

Learning to imitate manipulation actions is accomplished through several
steps. First, data is collected from the robot performing several actions on dif-
ferent objects. All features for A, O and E are measured for each demonstration,
and then processed, discretized and aggregated to acquire a dataset where all
features have a relatively small (ordinal) set of values. A probabilistic model
can then be learned that captures the dependencies between the three types of
features. This can be used for various purposes; e.g. for imitation learning; the
robot observes a human manipulating an object (with properties O), observes
the effects of the demonstrated action (E) and computes the most likely action
causing E and O, i.e. arg maxA P (A|E,O). Note that the robot has now com-
puted how to imitate a certain effect on an object in terms of his own action
repertoire which is obviously different from that of the human.



3 Learning Relational Skills and Experiments

The setting we have just described focuses on learning to manipulate a single
object. The data (E, A and O) is used to learn a (propositional) BN and single
actions for each object (e.g. large cubes should always be tapped to the left). We
envision a more general setting in which manipulation skills involve i) multiple
objects, ii) object interactions while manipulating, iii) behaviors depending on
spatial configurations of objects, and iv) sequential actions.

A typical example in the First-MM project is the shopping scenario. Part
of it is depicted in Figure 2. The robot is given a shelf, where several objects
are already present and their object properties (e.g. shape, location, orientation,
etc.) are known. An additional object is present in front of the shelf, and the task
of the robot is to place this object onto it, in a context of multiple other objects.

Fig. 2. Relational interactions on a shelf,
with colored objects and possible goal loca-
tions.

We set up experiments where an iCub
robot has to interact with one or two
objects on the shelf. The active object
is the one the robot acts upon, and
the passive object may interact with
the active one through the robot’s ac-
tions. Once the setting is extended to
more than one object, object inter-
actions occur (e.g. pushing an object
into another object), and the (spatial)
relationships between objects have to

be taken into account. We ran 87 experiments, 37 replicating the one object
experiment in [4–6] and 50 involving two objects. Figure 3(l) illustrates the two
objects setting. On the left is the robot’s hand (white) and on the black table
there’s a yellow rectangular prism (active), and a blue rectangular prism (pas-
sive). The experiments were recorded using a top-view camera. The videos were
processed in order to extract features (e.g. object shape, color, location, etc.), to
compute the feature values for groups of frames, and then to cluster and discre-
tise the values. From this data we first learn a BN using the K2 algorithm (using
Matlab), and then similar to [6, 5], we learn the parameters (i.e. the probabili-
ties) of this BN. Figure 3(r) shows a subset of the BN, involving the relations
between the action, the magnitude of the displacement of the active object, and
the displacement orientation of the two objects.

Learning an affordance model for these situations and the corresponding BN,
and the use of SRL allows to achieve a generalization over multiple objects in
this setting. Using SRL for affordances allows the robot to learn high-level skills,
including motion planning, from low-level components such as the actions and
their effects on objects with given properties. The ultimate goal of this research
is the temporal aspect of the setting, in which a plan consists of a set of actions.
To imitate the plan and learn necessary manipulation skills, the robot needs
to recognize individual actions in the plan. The rest of the paper will focus on
recognizing individual actions.



Fig. 3. (l) video still of the data showing the robot hand and two objects, (r) part of
the Bayesian network obtained from structure learning.

4 ProbLog Modeling and Results

SRL [7], a subfield of AI, studies the combination of logical representations, prob-
abilistic reasoning mechanisms and machine learning. Probabilistic programming
languages (PPL) are programming languages specially designed to describe and
infer with probabilistic relational models. The PPL ProbLog is a probabilistic
extension of the Prolog logic programming language, where facts are annotated
with probabilities and for which several inference methods are available. [8] Ad-
ditionally, Prolog style logical rules can be used for defining (general) background
knowledge to answer probabilistic queries.

We continue with the obtained experimental data described in Section 3 be-
fore, and add relational properties between objects (e.g. initial relative distance
or orientation between two objects) in the two objects scenario as well as re-
lational effects (e.g. final relative distance or orientation between two objects),
and model it using ProbLog. The model supports inference for action recogni-
tion in this relational extension of [4–6]. Our approach has the advantage that
data obtained from the one-object experiments can already be generalized to
multiple objects through the use of variables that refrain from referring to spe-
cific, hardcoded objects. ProbLog rules generalize over the object displacement
magnitude and orientation. Thus later this learning setting can be extended to
more than the one and two objects that the experiments investigated, to the full
shelf scenario. Knowing that grabbing and moving an object does not involve a
second object, the displacement of this main object can be generalized by using
the data already obtained from the one object experiment. ProbLog can be used
for modeling the relations of the learned Bayesian network and parameters. As
an example, in the subnet from Figure 3(r), the following ProbLog statement
using annotated disjunctions and the learned parameters models part of the re-
lation between robot action and the magnitude of the displacement of the main
object and the displacement orientation of that object:

0.8947 :: dispOri(ObjMain, 5); 0.1053 :: dispOri(ObjMain, 7)
← action(ObjMain, , 3), dispMag(ObjMain, 1).



This says that if the action type is tap (“3”) and the displacement magnitude
of the main object is small (“1”), then there’s a probability of 0.8947 of the dis-
placement orientation of the main object to be in a North (N) direction (“5”),
while there’s a probability of 0.1053 of it being in an East (E) direction (“7”).

The full relation between the robot action and the displacement orientation
of the secondary object is modeled as:

0.0345 :: dispOri(ObjSec, 1); 0.9655 :: dispOri(ObjSec, 7)← action( , ObjSec, 3).
0.0476 :: dispOri(ObjSec, 1); 0.0952 :: dispOri(ObjSec, 3);

0.6190 :: dispOri(ObjSec, 5); 0.1429 :: dispOri(ObjSec, 6);
0.0952 :: dispOri(ObjSec, 7)← action( , ObjSec, 4).

Logical rules are used to specify general behavior. In the example, when an ob-
ject is grabbed and moved, any other object in the scene remains unchanged
(displacement magnitude and orientation are 0), which is modeled as:

dispMag(ObjSec, 0)← action(ObjMain, ObjSec, 1).
dispOri(ObjSec, 0)← action(ObjMain, ObjSec, 2).

General logical rules keep the relations as generic as possible. Similar to the
examples presented above, the whole two-object model can be modeled using
ProbLog. Because of limited data, not every relation is caught by structure
learning. But using ProbLog is effective here too, as additional relations be-
tween objects, actions and effects, or constraints in the system can be modeled
additionally with the use of logical rules.

After modeling the whole setting in ProbLog, we performed inference in
order to do action recognition. It is assumed that the robot has knowledge of
the object properties (O), and it can observe the effects (E), and it needs to infer
which action (A) was performed. This resumes to querying for the condiditonal
probabilities P (A|O,E) in the ProbLog model for each of the 4 possible actions.
As an example, an instance of action recognition that we run had:

O: Object1=Cube Object2=Cylinder
Initial Relative Distance=Big Initial Relative Orientation=NE

E: Displacement Object1=Medium Displacement Object2=Small
Displacement Orientation Object1=N
Displacement Orientation Object2=E Contact Area=Medium

Predicted Action: Grasp, Release: 0% Tap: 86.588% Push: 13.412%
In this case, the action would be recognized by the robot as being a Tap.

One of the main advantages of using a probabilistic logic language is that
it makes learning and inference so flexible by generalizing over the specific ob-
jects. Given that most object interactions in this setting involve two objects,
the existing two objects model is a good approximation for the general shelf
setting. Assuming no multi-way (> 2) interactions at the same time, extending
this model to more than two objects on the shelf is easy, being enough to add all
the new object property values to the model, and then do inference. Eventually,
multi-way interactions can also be learned from experiments, just as the two
objects interactions were, and this added to the model for it to become more
exact. This can be used to find the best action the robot can do to place an
object at the wished location given a configuration of objects around it.



5 Conclusion and Future Work

We described an initial approach towards generalization of robotic affordance
model learning in a probabilistic relational setting. Moving to multi-object scenes
requires expressive representation schemes to generalize over specific configura-
tions of objects. Future work will involve the learning of full manipulation skills
and generalization over more than two objects in a multiple object scenario,
and planning given partial knowledge about the environment. One direction in
the multiple object setting is that of activity recognition and imitation learning.
Here, the robot detects the object properties and effects and tries to predict
which action was performed. This involves recognizing the low-level “atomic ac-
tions” involving just one or two objects, by employing the learned models (for
either 1 or 2 blocks). The whole demonstrated behavior consists of sequences of
such actions, which would allow learning high-level manipulation strategies from
demonstration by first distinguishing between their component low-level actions.
A second interesting direction is to use the affordance models for planning of ma-
nipulation strategies. The long term goal is to go towards a full shelf/shopping
scenario, in which the robot is instructed where and how to place objects by a
human.
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