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Abstract. Relational Dependency Networks (RDNs) are graphical mod-
els that extend dependency networks to relational domains where the
joint probability distribution over the variables is approximated as a
product of conditional distributions. The current learning algorithms for
RDNs use pseudolikelihood techniques to learn probability trees for each
variable in order to represent the conditional distribution. We propose
the use of gradient tree boosting as applied by Dietterich et al.(2004) to
approximate the gradient for each variable. The use of several regression
trees, instead of just one, results in an expressive model. Our results
in 3 different data sets show that this training method results in effi-
cient learning of RDNs when compared to state-of-the-art approaches to
Statistical Relational Learning.

1 Introduction
Bayesian and Markov networks are among the most important, efficient and ele-
gant frameworks for representing and reasoning with probabilistic models. They
have been applied to many real-world problems such as diagnosis, forecasting,
automated vision, sensor fusion, and manufacturing control. Nowadays, the role
of structure and relations in the data becomes more and more important: infor-
mation about one object can help the agent to reach conclusions about other
objects. Therefore, relational probabilistic approaches [6] have been developed,
which seek to avoid explicit state enumeration as, in principle, traditionally done
in statistical learning through a symbolic representation of states. The compact-
ness and even comprehensibility gained by using relational approaches, however,
comes at the expense of a typically much more complex model-selection task:
different abstraction levels have to be explored.

A notable exception is Heckerman et al.’s [8] dependency networks which are
a collection of regressions or classifications among variables in a domain that
can be combined using the machinery of Gibbs sampling to define an approxi-
mate joint distribution for that domain. The main advantage is that there are
straightforward and computationally efficient algorithms for learning both the
structure and probabilities of a dependency network from data. Essentially, the
algorithm consists of independently performing a probabilistic classification or
regression for each variable in the domain. This allowed Neville and Jensen [11]
to elegantly lift dependency networks to the relational case and employ relational
probability trees for learning.



In this paper, we describe a new learning approach for RDNs. Finding many
rough rules of thumb of how to change our probabilistic predictions locally can
be a lot easier than finding a single, highly accurate local model. Hence, we
propose to apply Friedman’s [5] gradient boosting to RDNs. That is, we represent
each conditional probability distribution in a dependency network as a weighted
sum of regression models grown in a stage-wise optimization. Such a functional
gradient approach has recently been used to efficiently train conditional random
fields for labeling (relational) sequences [3, 7].

The benefits of a boosting approach to RDNs are as follows: First, being a
nonparametric approach the number of parameters can grow with the number of
training episodes. In turn, interactions among random variables are introduced
only as needed, so that the potentially infinite search space is not explicitly
considered. Second, it is fast and straightforward to implement. Existing off-the-
shelf regression learners can be used to deal with propositional, continuous, and
relational domains in a unified way. Third, the use of boosting for learning RDNs
makes it possible to learn the structure and parameter simultaneously which is
an attractive feature as structure learning in SRL models is computationally
very expensive. Admittedly, we sacrifice comprehensibility for better predictive
performance. We compare several SRL models against the proposed approach in
three real-world domains and in all of them, our boosting approach outperforms
the other SRL methods and needs much less training time.

2 Relational Dependency Networks
Dependency networks [8] approximate the joint distribution over the variables as
a product of conditional distributions that can be learned independently. RDNs
[11] extend dependency networks to the relational setting. Though RDNs are
motivated using relational databases, we present them from a logical perspective.
RDNs consist of a set of predicate and function symbols that can be grounded
given the instantiation of the variables. Associated with each predicate Yi is a
conditional probability distribution P (Yi|Pa(Yi)) that defines the distribution
over the values of Yi given its parents’ values, Pa(Yi). We will use capitalized
letters (e.g., Y ) to denote the predicate, small letter (e.g., y) to denote the
grounding of the predicate and bold letters to denote the sets of groundings (e.g.,
x). Since RDNs are in relational setting, there could be multiple groundings for
a predicate. RDNs use aggregators such as count, max and average to combine
the values of these groundings.

An example of RDN is presented in Figure 1(i) for an university domain.
The ovals indicate predicates while the dotted boxes represent the objects in the
domain. As can be seen, there are professor, student and course objects with
taughtBy and takes as the relations between them. avgSGrade and avgCGrade
are the aggregator functions over grades on students and courses respectively.
The arrows indicate the probabilistic (or possibly deterministic) dependencies
between the predicates. For e.g., the predicate grade has difficulty, takes and
satisfaction as its parents. Also note that there is a bidirectional relationship
between satisfaction and takes. As mentioned earlier, associated with each pred-
icate Yi is a distribution P (Yi|Pa(Yi)).



Since RDNs can be represented as a set of conditional distributions, learning
RDNs correspond to learning these distributions. Neville et al. [11] use relational
probability trees (RPTs) [12] to capture these distributions. We use relational
regression trees to learn RDNs that serve as a baseline to compare against our
approach. Inference in RDNs is generally performed using Gibbs sampling. Due
to space constraints, we skip the details of learning and inference in RPTs and
RDNs and refer to [12, 11] for further details.
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Fig. 1. (i) Example of an RDN (ii) Example of a Relational Regression Tree.

3 Functional Gradient Boosting of RDNs

Functional Gradient methods have been used previously to train conditional
random fields (CRF) [3] and its relational extensions (TILDE-CRF) [7]. The
standard method of learning in graphical models is based on gradient-descent
where the learning algorithm starts with an initial parameter θ0 and computes
the gradient of the likelihood function. For CRFs, when using Functional Gradi-
ent Ascent[3, 7], the key idea is to start with an initial potential ψ0 and iteratively
add the gradients ∆. This is to say that after m iterations, the potential is given
by ψm = ψ0 + ∆1 + ... + ∆m. Here, ∆i is the functional gradient at episode i
and is given by ∆m = ηm · Ex,y[∂/∂ψm−1log P (y|x;ψm−1)]. Dietterich et al.[3]
suggested the evaluation of the gradient at every position in every training ex-
ample and fit a regression tree to these derived examples (tree boosting).

We take a similar approach to learning RDNs. As we have mentioned earlier,
an RDN can be represented as a set of conditional distributions P (Y |Pa(Y )) for
all the predicates Y and learning RDNs correspond to learning the structure of
these distributions along with their values. Functional Gradient Ascent provides
us with solutions to both the problems of structure and parameter learning.
We consider the conditional distribution of a variable yi to be P (yi|Pa(yi)) =
eψ(yi;xi)/

∑
y′ eψ(y′;xi) ∀xi ∈ xi 6= yi where ψ(yi; xi) is the potential function of

yi given all other xi 6= yi. The gradient w.r.t the potential functions is:

P (yi|xi) =
eψ(yi;xi)∑
y′ eψ(y′;xi)

⇒ logP (yi|xi) = ψ(yi; xi)− log
∑
y′

eψ(y′;xi)



∂logP (yi|xi)

∂ψ(yi = 1|xi)
= I(yi = 1; xi)−

1∑
y′ eψ(y′;xi)

∂
∑

y′ e
ψ(y′;xi)

∂ψ(yi = 1|xi)

= I(yi = 1;xi)−
eψ(yi=1;xi)∑
y′ eψ(y′;xi)

= I(yi = 1; xi)− P (yi = 1; xi)

In the above equation I is the indicator function. Note that the gradient is now
simply the adjustment required for the probabilities to match the observed value
(yi) in the training data for every example. This gradient serves as the weight
for the current regression example at the next training episode. Following prior
work[7], we use relational regression trees to fit the gradient function at every
position in the training example. An example is presented in Figure 1(ii). The
goal is to predict if A is advisedBy B. In the tree, if B is a professor, A is not
a professor, A has more than 1 publication and more than 1 publication with
B, then the regression value is 0.09. As can be seen for most of the other cases,
there are negative values indicating lower probabilities (< 0.5).

The key idea in our algorithm is to consider the conditional probability distri-
bution of each predicate as a set of regression trees. These trees are learned such
that at each iteration the new set of regression trees aim to maximize the like-
lihood of the distributions with respect to the potential function. Hence, when
computing P (a(X)|Pa(a(X))) for a particular value of X (say x), each branch
in each tree is considered to determine the branches that are satisfied and their
corresponding regression values are added to the potential ψ. We use aggregators
such as count, max and average to handle the case of multiple groundings of a
predicate. We use the regression tree learner TILDE [1] for learning the regression
trees. Due to space constraints, we refer to [1] for a detailed discussion of the
tree learner. For this paper, it suffices to mention that the tree learner requires
weighted examples as input where the weight of each example corresponds to the
gradient presented above for the corresponding example. Note that the different
regression trees provide the structure of the conditional distributions while the
regression values at the leaves form the parameters of the distributions.1

Our algorithm for learning RDNs using functional gradient is presented in
Algorithm 1. Algorithm TreeBoostForRDNs is the main algorithm that iterates
over all predicates. For each predicate (yk), it generates the examples for the
regression tree learner TILDE (that is called using function FitRelRegressTree) to
get the new regression tree and updates its model (F km). This is repeated for a
pre-set number of iterations M (in our experiments, M = 20). Note that the
after m steps, the current model F km will have m regression trees each of which
approximates the corresponding gradient for the predicate yk. These regression
trees serve as the individual components (∆m(k)) of the final potential function.

The function GenExamples (line 4) is the function that generates the exam-
ples for TILDE. As can be seen, it takes as input the current predicate index (k),
the data and the current model (F ). The function iterates over all the examples
and for each example, computes the probability and the gradient. Recall that for
1 In reality, the sets of the values at the leaves form the parameters as there could be

several possible regression trees for a given predicate.



Algorithm 1 Gradient Tree Boosting for RDN’s

1: function TreeBoostForRDNs(Data)
2: for 1 ≤ k ≤ K do . Iterate through K predicates
3: for 1 ≤ m ≤M do . Iterate through M gradient steps
4: Sk := GenExamples(k;Data;F km−1) . Generate examples
5: ∆m(k) := FitRelRegressTree(Sk;L) . Functional gradient
6: F km := F km−1 +∆m(k) . Update Models - Set of regression trees
7: end for
8: P (Yk = yk|Pa(Yk)) ∝ ψk . ψk is obtained by grounding F kM
9: end for

10: return
11: end function
12: function GenExamples(k,Data, F )
13: S := ∅
14: for 1 ≤ i ≤ Nk do . Iterate over all examples
15: Compute P (yik = 1|Pa(yik)) . Probability of the predicate being true
16: ∆(yik) := I(yik = 1)− P (yik = 1|Pa(yik)) . Compute Gradient
17: S := S ∪ (yik,∆(yik)) . Update relational regression examples
18: end for
19: return S . Return regression examples
20: end function

computing the probability of yi, we consider all the trees learned for Yi. For each
tree, we compute the regression values based on the groundings of the current
example. The gradient is then set as the weight of the example.

The algorithm TreeBoostForRDNs loops over all the predicates and learns
the potentials for each predicate. The set of regression trees for each predicate
forms the structure of the conditional distribution and the sets of leaves form
the parameters of the conditional distribution. Thus gradient boosting allows us
to learn the structure and parameters of the RDN simultaneously.

4 Experiments
We now present our results from: (1) UW dataset to predict the advisedBy
relationship between students and professors; (2) Movie lens dataset to predict
the ratings of movies by users; (3) Predicting adverse-drug reactions to drugs.

Algorithm Likelihood AUC-ROC AUC-PR Training Time

RDN-B 0.810 0.961 0.930 9 s
RDN∗ 0.805 0.888 0.781 1 s
MLN 0.731 0.535 0.621 93 hrs

Table 1. Results on UW data set.

For the UW-dataset [4], the goal was to predict the advisedBy relationship
between a student and a professor. The dataset consists of professor, student and
course details from 5 different sub-areas of computer science. We trained on 4
areas and evaluated the results on the other area. Our results are thus averaged
over 5 runs. We compared our method (which we call RDN-B to denote RDNs



learned by boosting) against RDN∗ (that is learned using a single TILDE tree
instead of RPTs) and MLNs [4]. For RDN∗, we used 20 leaves and all the same
features that were used for RDN-B. For MLNs, we used Alchemy2.

The results of the UW-dataset are presented in Table 1. We present the
likelihood on the test data (

∑
i P (yi = ŷi)), the area under curve for PR and

ROC3 and the time taken for training. As can be seen, RDN-B that use gradient
tree boosting has the best likelihood on the test data and is marginally (but
statistically significantly) better than RDN∗. MLNs on the other hand were
able to identify the negative examples but did not identify the positives well.
For the AUC on both ROC and PR curves, it is clear that RDN-B dominates
all the other methods. To put this in context, SAYU [2] which had the best
reported AUC (for PR curve), is significantly worse than our approach (their
reported results were 0.468 for AUC). For MLNs, we had to use all the clauses
that predicted advisedBy from the Alchemy website since learning the structure
on this data set was very expensive. Hence we learned only the weights for these
clauses. As can be seen from the last column, weight learning for this data set
took us 4 days as against several seconds for our approach.

Algorithm AUC-ROC AUC-PR Training Time Accuracy

RDN-B 0.625 0.607 332 s 0.587
RDN∗ 0.622 0.607 6.25 s 0.573

Table 2. Results on Movie Lens data set.

Our next data set is the Movie Lens data set[14]. We created a randomly
selected subset with 100 users and 603 movies. The task is to predict the pref-
erences of the users on the movies. The users have attributes age, gender, and
occupation while the movies have released year and genre. Since we are inter-
ested in predicting the preference of the user, we created a new predicate called
likes for every user-movie combination that takes a value 1 if the user likes the
movie and 0 otherwise. Originally, the ratings of the movie by the user were in a
5-star scale. We created the likes relationship by setting the value 1 if the rating
of a movie by an user is greater than the average rating of all the movies by the
same user. Typically, every user rated (30− 400+) movies. We performed 5-fold
cross validation on the data by choosing 80% of the data to be the training set
and evaluating on the other 20%.

Since this domain involved complex interaction between attributes, we in-
troduced four aggregators for both RDN methods: (a) count of movies rated by
the user, (b) count of ratings for a movie, (c) count of ratings of movies of a
genre by the user and (d) count of the movies that the user likes in a genre.
From Table 2, it can be observed that RDN-B is marginally better than RDN∗

(statistically significant results in accuracy and AUC-ROC). As expected the
time taken for boosting is higher when compared to learning a large single tree.
We attempted to use Proximity 4 (the default package for RDNs), but ran out of
2 alchemy.cs.washington.edu
3 We used http://mark.goadrich.com/programs/AUC/ to compute AUC.
4 http://kdl.cs.umass.edu/proximity/index.html



memory. If we restrict the search space, the results were close to random. This is
the key reason to use TILDE for RDN∗ and not the Proximity system. But both
the methods are significantly better than MLNs where we used the hyper-graph
lifting option of Alchemy to learn the structure [9]. Alchemy was not able to
learn any meaningful structure (even with the aggregated predicates) and hence
did not learn any useful model. We do not present Alchemy results here as all
the examples are predicted false. The results of RDN-B are quite similar to the
best results reported using multi-relational Gaussian Processes [14], where the
AUC for ROC was 0.6272 for the same experimental setup.

Algorithm AUC-ROC AUC-PR Training Time Accuracy

RDN-B 0.824 0.839 497.8 s 0.753
RDN∗ 0.738 0.736 39.4 s 0.697

Noisy-Or* 0.420 0.582 - 0.687

Table 3. Results on OMOP data set.

Our third problem is the prediction of adverse drug reactions on patients. The
Observational Medical Outcomes Partnership (OMOP) designed and developed
an automated procedure to construct simulated datasets5 that are modeled after
real observational data sources, but contain hypothetical people with fictional
drug exposure and health outcomes occurrence. We used the OMOP simulator to
generate a dataset of 10, 000 patients that included record of drugs and diagnoses
(conditions) with dates. The goal is to predict drug use based on the conditions.
75% of the data was used for training, while the remaining 25% was used for
testing. The test was conducted on 5 drugs with a training set of 1950 patients
on the drug and a test set of 630 patients. We measured accuracy by predicting
true if the predicted probability is > 0.5 and false otherwise.

The results are presented in Table 3. As can be seen, in this domain our
approach RDN-B is significantly better than RDN∗ in all the metrics except
training time. This is due to the fact that in this domain, there were several
different weak predictors of the class. In fact, this is the best result reported so
far for this problem. The third row of the table (Noisy-Or) is reported from a
recent publication6 where we used Aleph [13] to learn ILP rules. These rules were
then combined using the Noisy-Or combining rule. The parameters were learned
using algorithms presented in [10]. Our current approach is significantly better
than the ILP-SRL combination in all the evaluation metrics. We were unable
to get Alchemy to learn rules for this data set due to the prohibitively large
number of groundings in the data. We are currently working on experimenting
with different settings of Alchemy to learn in this data set. Our experiments
conclusively demonstrate that the boosting approach to learning RDNs yields
superior performance over other SRL models.

5 http://omopcup.orwik.com
6 Citation of the other work withheld as it is under blind review



5 Conclusion
Structure learning in SRL models is a hard problem. In this work, we propose
the use of functional gradient boosting to learn relational dependency networks
that allow for efficient learning of both structure and parameters of RDNs. We
used functional gradient ascent that can be interpreted as boosting regression
trees that are grown stage-wise. We demonstrated empirically in several domains
that the learning of RDNs using boosting is very effective and efficient. While
the resulting structure is not always interpretable, the boosting approach yields
superior performance over traditional RDNs and other SRL models (such as
MLNs [4], SAYU [2] and combining rules based formalisms).

One possible future direction is to evaluate the approach in several other do-
mains. Another possible research direction is to compare the current approach of
gradient-tree boosting against learning random forests (i.e., bagging). Bagging
vs. boosting has remained an interesting problem in traditional machine learning
and it will be worthwhile to compare the methods in the context of relational
models (particularly in the case of RDNs). Finally, given that structure learn-
ing in SRL models is prohibitively expensive, boosting provides an interesting
possibility of structure learning in several different SRL models such as MLNs.
Hence, we plan to investigate the problem of boosting for MLNs in the future.
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