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ABSTRACT
Robot grasping is a critical and difficult problem in robotics.
The problem of simply finding a stable grasp is difficult
enough, but to perform a useful grasp, we must also con-
sider other aspects of the task: the object, its properties,
and any task-related constraints. The choice of grasping
region is highly dependent on the category of object, and
the automated prediction of object category is the problem
we focus on here. In this paper, we consider manifold in-
formation and semantic object parts in a graph kernel to
predict categories of a large variety of household objects
such as cups, pots, pans, bottles, and various tools. The
similarity based category prediction is achieved by employ-
ing propagation kernels, a recently introduced graph kernel
for partially labeled graphs, on graph representations of 3D
point clouds of objects. Our work highlights the importance
of moving towards the use of structured machine learning
approaches in order to achieve the dream of autonomous
and intelligent robot grasping: learning to map low-level vi-
sual features to good grasping points under consideration
of object–task affordances and high-level world knowledge.
We evaluate propagation kernels for object category predic-
tion on a (synthetic) dataset of 41 objects with 11 categories
and a dataset of 126 point clouds derived from laser range
data with part labels estimated by a part detector. Further,
we point out the benefit of leveraging kernel-based object
category distributions for task-dependent robot grasping.

1. INTRODUCTION
Graph data is abundant nowadays. Examples include so-

cial networks, the world-wide-web, biological networks, com-
munication and transportation networks, and energy grids.
Kernel-based learning techniques leveraging kernels between
graphs (graph kernels) or kernels between nodes (kernel on
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Figure 1: Task-dependent grasping pipeline for a
cup. Top row: 1© object; 2© pose and symbolic
parts (with labels top (yellow), middle (blue), bot-
tom (red), and handle (green)); 3© k-nn graph2 with
part labels; graph kernel-based category distribu-
tion. Bottom row: probabilistic logical module;
4© predicted pre-grasp (middle) and grasping point
module.

graphs) have widely been studied [22, 10, 21]. Successful
real-world applications, however, can almost exclusively be
found in the field of bioinformatics, e.g. [5, 17]. An ap-
plication area that has seen less influence from graph-based
learning is robotics, in particular vision-based grasping. Ob-
jects can be grasped in different ways. For manipulation
tasks in arbitrary and dynamic environments, it is essential
to perform a good grasp. That is, the grasp depends on
the specific manipulation scenario: the task, the object, its
properties, as well as grasp constraints (e.g., gripper config-
uration). Thus, autonomous and intelligent robot grasping
heavily relies on reasoning about world knowledge, in the
form of object ontologies and object–task affordances, visual
features, object categorical and task-based information.

Consequently, it is difficult – if not impossible – to learn an
unstructured model that directly maps visual perceptions to
task-dependent grasps, as for instance introduced in [4, 14,
11, 19]. This may be the case especially if the robot acts in
highly dynamical real-world environments handling a huge
range of objects having different categories, functionalities

2The edges are colored according to the colors of the adja-
cent nodes.



and task affordances, such as objects found in households,
supermarkets, or industrial sites. Instead, we investigate
an intermediary probabilistic logical module to semantically
reason about the most likely object part to be grasped, given
the scene description, object category, and task constraints.
Then, a mapping is learned from part-related local visual
features to good grasping points. We propose a probabilis-
tic logical pipeline, illustrated in Figure 1, exploiting graph
kernels, object/task ontologies, semantic reasoning, and also
perceptual low-level learning. By leveraging world knowl-
edge and relations to encode compact grasping models, our
pipeline can generalize over similar object and task cate-
gories, thus offering a natural way to encode the non-trivial
realization of high-level knowledge. This allows us to exper-
iment with a wide range of object categories and is therefore
a critical aspect of autonomous agents acting deliberately in
new environments. In this context, the exploitation of ob-
ject ontologies, task affordances, and grasping constraints,
and thus, successful generalization, heavily depends on a
good object category estimation. For example, a cup can-
not be stored upside-down in a cupboard if it contains liq-
uid (is full), whereas for a full can this should be possible.
As an example for task-dependent grasping, a knife should
be grasped by its handle if its intended use is for cutting,
whereas it has to be grasped at the blade if the task is pass-
ing it to a human. For the same task a screwdriver, however,
could be grasped in any region as there is no danger for the
interacting human to cut him/herself. That is why the main
focus of this paper is on object category prediction, cf. the
top row of Figure 1. The main contribution here is the use
of propagation kernels on 3D point clouds for object catego-
rization in robot grasping.

Object categories are predicted by employing object sim-
ilarity based on manifold and semantic part information via
propagation kernels, a recently introduced family of graph
kernels capable to handle partially labeled graphs [16]. Given
a (partial) 3D point cloud, the surface normals, and part la-
bels of each point, we construct a k-nearest neighbour (k-nn)
graph and compute an object similarity based on the prop-
agation kernel – more specifically the diffusion graph kernel
– among the respective labeled k-nn graphs. Object cate-
gory prediction is achieved by applying a weighted vote on
the categories of the most similar objects. Figure 2 shows
k-nn graphs for three different objects. To enhance robust-
ness, we compute a distribution over categories rather than
hard predictions. Knowing the object category allows the
robot to reason about object–task affordances and to gen-
eralize over object parts in similar task-dependent grasping
situations. Generalization is achieved by utilizing an object
ontology as illustrated in Figure 3.

We evaluate propagation kernels for object category pre-
diction on two scenarios comprised of 41 and 126 3D point
clouds and point out the benefit of leveraging kernel-based
object category distributions for task-dependent robot grasp-
ing. We proceed as follows. We start off by reviewing related
work on graph kernels and object categorization. Next, we
give a detailed explanation of the graph construction and the
kernel-based object category prediction. Before concluding,
we present our experimental results.

2. RELATED WORK
Object categorization is an important problem in com-

puter vision and robotics with numerous and versatile tech-

(a) glass champagne (b) mug ikea (c) knife butcher

Figure 2: Semantic k-nn graphs (k = 4) for three
objects, (a) champagne glass, (b) coffee cup, and (c)
butcher knife, with part labels top (yellow), middle
(blue), bottom (red), usable area (cyan), and handle
(green). (The edges are colored according to the
colors of the adjacent nodes.) Note, that the figures
do not depict the edge weights being proportional
to the change in curvature of the adjacent nodes.

niques. An extensive overview of related work is therefore
beyond the scope of this paper. In the following, we review
approaches based on graph kernels as well as some recent
ones for 3D point cloud data.

Considerably previous work addresses the problem of ob-
ject categorization via graph kernels for 2D images [9, 13,
20, 1, 7, 2, 23]. Although the approach is quite successful
for 2D data, it is not clear how to generalize them to han-
dle general 3D point clouds, where exploiting the manifold
structure of the data is more challenging. Thus, we exploit
the graph representation of 3D point clouds and a graph ker-
nel that is able to deal with noise and missing information,
commonly encountered in point clouds derived from laser
range sensors.

Closely related is the work in [3], which introduces a subtree-
pattern kernel for point clouds. This graph kernel is a spe-
cial instance of the Weisfeiler–Lehman subtree kernel [21]
which has proven to be successful on various bioinformat-
ics benchmark datasets. Employing the Weisfeiler–Lehman
test of isomorphism to compare subtree-patterns is highly
efficient and hence, bounding the number of child nodes in
the subtrees as suggested in [3] is not necessary for the sake
of efficiency. Further, experimental evaluation in [3] is only
carried out for 2D character recognition and not for more
challenging problems, such as general object categorization.
Therefore, again, it is not clear how the kernel performs on
real 3D point cloud data. Our approach to object categoriza-
tion for vision-based robot grasping is robust with respect
to noisy input data. The point clouds may be incomplete
and label information may be only partially available. This
is the main reason for the use of propagation kernels [16]
which are explicitly designed for partially labeled graphs.

Several other closely related lines of related work tackle
the problem of 3D object recognition [8, 12, 18]. However,
they do not exploit manifold information in a graph kernel.
Thus, to the best of our knowledge we present the first ap-
proach utilizing manifold-based graph kernels for 3D point
cloud categorization and real-world robotic grasping.



Figure 3: Object Ontology for the 11 categories con-
sidered in this paper.

3. OBJECT CATEGORY PREDICTION VIA
GRAPH KERNELS

As the main contribution of this paper, we estimate the
object category by retrieving the objects with the most simi-
lar global properties based on a graph kernel leveraging man-
ifold information and semantic object parts. While benefi-
cial for grasping point prediction [15], global object similar-
ity also ensures a strong enough appearance-based predictor
for object category. This prediction is then in the form of
a distribution on object categories is used as prior for the
probabilistic logical reasoning for task-dependent grasping.
To incorporate global object similarity for object category
prediction, we leverage propagation kernels, a recently intro-
duced graph kernel designed for classification and retrieval
of partially labeled graphs [16].

To get the distribution on object categories for a particu-
lar query object, we first represent its 3D point cloud as a
graph. We then compute a graph kernel between this graph
and graphs built from objects in an object database, and re-
trieve the objects deemed most similar. We represent each
object by a labeled graph where the labels are the seman-
tic parts and the graph structure is given by a k-nearest
neighbour (k-nn) graph, cf. Figure 2. For each object point
cloud we derive a weighted k-nn graph by connecting the
k nearest points w.r.t. Euclidean distance in 3D. We use a
four-neighbourhood (i.e., k = 4) and assign an edge weight
reflecting the tangent plane orientations of its incident nodes
to encode changes in the object surface. The weight of edge
(i, j) between two nodes is given by wi,j = |ni · nj |, where
ni is the normal of point i. The nodes have five semantic
classes encoding object part information: top, middle, bot-
tom, handle and usable area. To be able to capture manifold
information as graph features in the presence of full label
information, we use a diffusion scheme of the labels corre-
sponding to the diffusion graph kernel proposed in [16], in
the following, simply referred to as the propagation kernel.
We stress that the graphs of the 3D point clouds as illus-
trated in Figures 1 3© and 2. capture both manifold infor-
mation (geodesic distance) via their structure and semantic
information (part labels) via their node labels.

The similarity measure among objects is a kernel function
over counts of similar node label distributions per diffusion
iteration. The T -iteration propagation kernel between two

graphs G′ and G′′ is defined as:

KT (G′, G′′) =

T∑
t=0

ker(G′t, G
′′
t ), (1)

where T represents the maximum number of label propaga-
tion interactions considered and ker is a linear base kernel,
defined as:

ker(G′t, G
′′
t ) = 〈φ(G′t), φ(G′′t )〉. (2)

The main ingredients of propagation kernels are the distri-
bution based graph features φ(Gt). They are essentially
computed from node label distributions of running label dif-
fusion on the respective graphs. Hence, the node label dis-
tributions of Gt are updated according to Lt ← T Lt−1,
where the transition matrix T is the row-normalized adja-
cency matrix T = D−1A and D being the diagonal degree
matrix with Dii =

∑
j Aij . Based on the Lt(0 ≤ t ≤ T ), we

compute for each graph the counts of similar distributions
among the respective graphs’ nodes. As the node label dis-
tributions are m−dimensional continuous vectors, where m
is number of semantic labels (in this case m = 5), propa-
gation kernels use locality sensitive hashing (LSH) [6] as a
quantization function to ensure the acquisition of meaning-
ful features. We employ a quantization function for distribu-
tions approximately preserving the total variation distance
(for more details, see [16]). The bin width parameter of LSH
is fixed to w = 10−4 in all experiments.

Propagation kernels leverage the power of evolving con-
tinuous node label distributions as graph features and hence
capture both manifold and semantic information. Given a
new object G∗ that the robot aims to grasp, we first select
the top n most similar graphs {G(1), · · · , G(n)}, where simi-
larity is given by the respective row of the correlation matrix
K̂, where

K̂ij =
Kij√
KiiKjj

. (3)

Note, that by using K̂ instead of K we achieve a normal-
ization w.r.t. the number of points in the point clouds and
hence, w.r.t. the scale of the objects. We set n = 10 in all our
experiments. Second, we build a weighted average over the
categories of the objects corresponding to {G(1), · · · , G(n)},
where the weight function is defined as

f(x) = exp (−x), (4)

with x being the rank after sorting the kernel row K̂∗,:. This
average is finally used as a prior distribution on the object
category for a query object with graph representation G∗ in
the probabilistic logical module. The prior distribution over
object categories for the cup in Figure 1 using T = 10 is:

0.56:cup; 0.36:can; 0.05:pot; 0.02:pan; 0.002:bottle.

Now, we will proceed by presenting experimental results
object category prediction given 3D point cloud information
and semantic part labels.

4. EXPERIMENTS
Our intention here is to investigate the power of graph

kernels, namely the propagation kernel, for object category
prediction and thus its applicability in a probabilistic logical
approach to task-dependent robot grasping.



dataset/scenario

method db semi/real

# of graphs 41 126
avg. # of nodes per graph 1 377 1 442
# node labels 5 5
# categories 11 11

Table 1: Statistics for all datasets. Note, that
SEMI and REAL differ in the node labeling. In SEMI
nodes are manually labeled, whereas in REAL seman-
tic node labels are estimated by a part detector. DB
is used in all experiments as database, so that graph
kernels for the real scenarios (SEMI and REAL) are
computed between the 41 database graphs and the
respective query object.

The two main questions we aim to answer in this section
are:
(Q1) Does incorporating manifold information, i.e. graph
structure, improve upon label-based category prediction?
(Q2) Are propagation kernels competitive with state-of-the-
art graph kernels for the task of object category prediction
for task-dependent robot grasping?

4.1 Datasets
The three datasets for quantitative evaluation are gener-

ated with the help of the orca simulator3 and their statistics
are summarized in Table 1.

DB. For the first dataset data acquisition is fully simu-
lated. That is, we have the complete point cloud of the input
object and the semantic part labels are provided as ground
truth. The point cloud is obtained from a previously defined
3D mesh of the object by up-sampling points using midpoint
surface subdivision. Object parts are extracted manually
from the point cloud. This “perfect scenario” is then used
twofold. First, we use this dataset to evaluate object cate-
gory prediction in a synthetic scenario. The dataset denoted
as db contains 41 objects belonging to 11 categories modeled
by the ontology illustrated in Figure 3. Second, we use these
41 objects Gdb = {G(1), ..., G(41)} as database to compute

the propagation kernel KT (G∗, Gdb) =
∑T

t=0 ker(G∗t , G
db
t )

to get the similarity among any query object G∗ and the
database objects. Hence, this db is used as object database
in all experiments. Further, we plan to use it in execution
time on a robot performing task-dependent grasps.

SEMI and REAL. For the other two datasets the point
clouds are simulated laser range data and the following steps
of obtaining the scene description are executed in the orca
simulator. The point cloud of the query object is estimated
from several view points. The 3D data for each view is
acquired from a simulated range camera (with the param-
eters of the Kinect sensor), placed on the robot platform.
For each object we use between one and eight views de-
pending on whether the object is symmetric or not. We
further consider two possible settings. In a first setting, we
obtain the labels manually from the realistic point cloud,
that is we use ground truth label information. We denote
this dataset as semi. In a second setting we also replace
ground truth parts with more realistic part detector esti-

3http://orca-robotics.sourceforge.net

dataset/scenario

method db semi real

rand 9.1 9.1 9.1
Klabels 63.4 61.1 57.9

Kwl (best T ) 73.2 (4) 56.3 (1) 47.6 (14)
Kpk (best T ) 87.8 (12) 66.7 (6) 58.7 (6)

Table 2: Average accuracies (%) on all objects in the
datasets DB, SEMI, and REAL for graph kernels KPK

and KWL, and baselines RAND and KLABELS. We report
results for KPK and KWL for the best T on the respec-
tive evaluation scenario, the maximum number of
iterations T resulting in the best average accuracy
is given in brackets. Note, that KLABELS corresponds
to a linear kernel among label counts (T = 0), i.e., no
graph structure is incorporated in the kernel com-
putation. Bold indicates best performance.

mates.4 We denote this dataset as real. The two more
realistic datasets semi and real contain 126 labeled point
clouds which are instances of 26 objects of all categories ex-
cept cooking tool. The datasets db and semi are available
for download at http://www.first-mm.eu/data.html.

4.2 Experimental Protocol
We compare propagation kernels (Kpk) to the the Weisfeiler–

Lehman subtree kernel (Kwl) and to two baselines: random
category selection (rand), and a linear kernel (Klabels) tak-
ing as input only the labels counts but no graph structure.
For all kernel-based methods we select the 10 most simi-
lar objects from the database db based on the respective
row of the normalized kernel matrix, Eq. (3), and build a
weighted average of their categories using Eq. (4). Note that
predicting the object category utilizing a kernel machine di-
rectly (we tried support vector machine classification) did
not give competitive results. This might be caused by the
large number of classes in combination with few training ex-
amples. For missing part label information on the nodes we
initialize the label distribution uniformly. For Kwl we use
an additional label as suggested in [21]. For Kpk and Kwl

we present results where the maximum number of iterations
T ∈ {1, ..., 15} is chosen to give the best performance. Note,
that setting T = 0 in Kpk and Kwl gives the same results and
corresponds to Klabels. For db, performance is measured by
a leave-one-out cross validation.

4.3 Quantitative Results on Object Category
Prediction

The predictive performances for all methods on all sce-
narios are summarized in Tables 2 and 3. We report on
average accuracy (Table 2) to evaluate the object category
prediction task. Here, we take the category with the highest
probability mass as prediction. On db we clearly see that
both graph kernels Kpk and Kwl improve upon using label
information only. On semi only propagation kernels are able
to improve the performance of the baseline methods. In the
third scenario (real) average accuracies are only slightly

4Note, that the part detector estimates are corrected for var-
ious tool objects as the current detector only detects correct
parts but not their correct location.
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Figure 4: Category distributions for example objects from DB with classes bowl (a), cup (b), and knife (c)
derived from KPK with T = 12.

dataset/scenario

method db semi real

Klabels 1.88 1.78 2.09

Kwl (best T ) 1.59 (5) 1.57 (14) 1.75 (14)
Kpk (best T ) 1.39 (13) 1.53 (4) 1.87 (4)

Table 3: Average rank of the true category (the
lower the better) for all objects in the datasets DB,
SEMI, and REAL for graph kernels KPK and KWL, and
baseline KLABELS. We report results for KPK and KWL

for the best T (provided in brackets) on the respec-
tive evaluation scenario. Bold indicates best rank.

higher for Kpk. In general, however, question (Q1) can be
answered affirmatively. Note, that for Kwl setting T = 0
gives the best performance, then Kwl = Klables.

Besides analyzing the most probable category, our aim
here is also to evaluate the category distributions and their
use in the probabilistic logical approach to task-dependent
grasping. First, we illustrate example distributions for ob-
jects of three different categories bowl, cup, and knife in
Figure 4. The category distributions for all bowls have its
highest probability at the correct category (Panel (a)). Pre-
dicting the category of mug_large, however, fails (Panel
(b)). This might be because the body of this particular
cup is shaped more like one of the pans and some pots in
the database. In general it is reasonable that the cups look
more like pans and pots as they have a similar shape5 and
the same parts (top, middle, bottom, and handle). The dis-
tributions of the knives clearly show their similarity to other
knives but also to other tool objects like hammers and screw-
drivers. This is consistent with their semantic parts (us-
able area and handle). The higher probability mass for the
category knife is caused by their shape, i.e. the graph struc-
ture of the corresponding point clouds. This behaviour is
exactly desired in the probabilistic logical grasping model as
task affordances and object ontology can be used to achieve
generalization.

In order to quantitatively compare the distributions we

5Note, that we use the correlation matrix (Eq. (3)) which
yields a normalization w. r. t. the size (number of nodes).
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in the distribution computed from KPK and KWL. For
both axes lower values are better.

compute the average rank of the true category in the dis-
tributions obtained from all kernels Klabels, Kwl, and Kpk.
The results are summarized in Table 3. Again, we see that
leveraging the graph structure improves the average rank
especially for the third scenario real. Kpk achieves a lower
average rank on db and semi. On real 14 iterations of Kwl

result in the lowest average rank for the Weisfeiler-Lehman
subtree kernel. However, Kpk results in a not much worse
rank after 4 kernel iterations and hence in faster time. In
robotics computation time is an important criteria. Ob-
viously we do not want the robot pausing too long before
actually grasping the desired object appropriately. Hence,
evaluating applicability in robotics also involves analyzing
the trade-off between qualitative performance and compu-
tation time. Figure 5 shows the average time in seconds
needed to compute the graph kernels versus the respective
average rank for the realistic grasping scenarios semi and
real. Note, that we use a hashing-based implementation of
the Weisfeiler-Lehman kernel as introduced in [16]. The plot
clearly shows a superior behaviour for propagation kernels
as a lower rank is reached in shorter time. These results
answer question (Q2) affirmatively.



4.4 Benefits for Task-dependent Grasping
In this section we aim to investigate the importance of us-

ing the object category distributions derived from the prop-
agation kernel in the probabilistic logical pipeline described
in the Introduction. We compare the performance of incor-
porating kernel-based distributions versus uniform distribu-
tions on object categories for two inference problems. In the
first problem, we want to infer the most suitable grasping
task to be performed on a given query object. The second
problem is to predict the most suitable pre-grasp, i.e. gras-
pable region for a given grasping task. This setting is de-
picted in the bottom row of Figure 1 for the given task pass.
A more detailed evaluation of the whole probabilistic logical
pipeline goes beyond the scope of this paper. In summary,
the results for both grasping tasks are significantly better
when using the graph kernel distribution as opposed to the
uniform one. For example we achieve an improvement of
about 20% accuracy for the task selection problem. This
highlights the importance of good category distributions for
task-dependent robot grasping and encourages further re-
search on graph kernels for object category prediction.

5. CONCLUSIONS
We have presented a novel application of graph kernels,

specifically, object category prediction as a prerequisite for
task-dependent robotic grasping. Given an object to grasp,
we convert its 3D point cloud into a graph and use a part
detector to predict part labels for each node. This graph
representation of the object is then compared to graphs of
known objects in a database, and the most similar ones are
used to predict the category of the unknown object. A previ-
ously proposed graph kernel, the diffusion graph kernel, was
chosen for this task, and we showed in a series of experiments
that it is able to quickly and accurately predict an object’s
category. Finally, our graph-kernel based object category
predictor has measurable impact on the overall quality of
the task-dependent robotic grasping pipeline it is part of.
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