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Abstract—Robustness to perturbation has been advocated as
a key element to robot control and efforts in that direction are
numerous. While in essence these approaches aim at “endowing
robots with a exibility similar to that displayed by humans”,
few have actually looked at how humans react in the face of
fast perturbations. We recorded the kinematic data from human
subjects during grasping motions under very fast perturbations
Results show a strong coupling between the reach and graspFig. 1. Experimental setup to record human behavior undeuretions.
components of the task that enables rapid adaptation of the Two xed targets are accompanied by the on-screen targettselevhich
ngers in coordination with the hand posture when the target activates different targets by changing colors and heneatera spatial
object is perturbed. We develop a robot controller based on perturbation. The subjgct wears motion sensors and data g\b_hu_:h record
Coupled Dynamical Systeméhat expoits coupling between o 18 Yile ATUhand Knematce o ed e mervs, Toe Kweneiues
dynamical systems driving the hand and nger motions. This - y
offers a compact encoding for a variety of reach and grasp
motions that adapts on-the- y to perturbations without the need

for any re-planning. To validate the model we control the motion . . . .
of the iCub robot when reaching for different objects. handling spatial and temporal perturbations. In this warg,
address the problem of having a combined encoding scheme

. INTRODUCTION for both reaching and grasping behaviors capable of adgptin

Performing manipulation tasks interactively in real eomir against realtime perturbations during task reproductibn.
ments requires a high degree of accuracy and stability. &t worth mentioning here that this entails more complexity
the same time, except in completely determined and stafitan two independent attractor based tasks. Human neuro-
environments, machine perception of the environment matysiological studies. [5./ 7] have shown that apart from the
suffer from real-time perturbation. To handle these, iuiegs parallel evolution of hand transport and preshape, theist ex
exibility on the part of the robot. These considerationskaa convergence constraints and correlations between theitwso p
the task of reaching to grasp under fast perturbations dif ¢ cesses. In addition to the advantage of “human-like” mgtion
to deal with. Planning of constrained grasping motions hdsis critical to maintain the coupling between hand and arm
often been studied as two separate problems of graspimg@tion while performing a task in order to ensure successful
[15, 3] and generating arm-motion| [2,111] i.e., decouplingrasp formation at the target. In addition to studying the
the reach and grasp components. The high dimensionalityrrelations in the unperturbed human behaviors of peifuym
and complexity of these problems has discouraged the usgrasping task, we also study perturbed demonstrations of
of a single coherent framework for carrying out both thBuman subjects in order to biologically inspire our apphoac
tasks. Constrained motion planning for only the reachirgf handling perturbations. We present the Coupled Dynadmica
motion in high dimensional arm-hand systems is a challengisystem (CDS) model which ensures that the motion con-
problem itself and requires the use of prede ned heuristits straints mentioned above are respected and at the same time
Programming by Demonstration (PbD), these heuristics agasures very fast adaptation under perturbations.
embedded in the demonstrations provided by a human agent
which can be used to generate a generalized task description
[4]. Classically, the behavior of reaching to grasp objects has

In previous work Gribovskaya and Billard|[9] have usedeen treated as two different problems. Especially in nmotio
PbD to encode the dynamics of a task as a Dynamical Systptanning works, reaching to a pre-grasp pose and motion of
(DS) where the end effector of the robot moves under thlee hand and ngers are considered as independent processes
in uence of an attractor positioned at the target. It hasrbeand are triggered sequentially |2,/ 10/ 18]. Although both th
shown that such an approach ensures reproduction of thsues of reaching to a pre-grasp pose and formation of grasp
learned behavior in a generalized manner while ef cientlground arbitrary objects are intensively studied, very [BuwE]

Il. RELATED WORK



have looked into combining the two so as to have a unied

reach-grasp system.

Most manipulation planners typically plan paths in th
con guration space of the robot using graph based techsiqu
Classical approaches use probabilistic roadmap and itsniar
[6, [17] which assume a prede ned and static environme
and are unable to handle any perturbations at the run-tin
Moreover, they require huge preprocessing steps and are
suitable for replanning of grasping tasks online. More ntge
LaValle and Kuffner|[14] proposethpidly exploring random
trees RRTs as a faster alternative to manipulation plannir
problems, provided the existence of an ef cient inverseekin
matic (IK) solver. RRT based methods [2, 18] are current
the fastest online planners which exploit the ef cient samg
ability of RRTs in order to nd suitable paths between thetsta
and the goal con gurations. Note that a major drawback of ¢
graph based approaches is that they lose to retain any iéxp
correlations that exist between the two processes of ha
transport and preshape as naturally performed by humans.

The concept of coupling between the reach and gra
motions is inspired by evidence in physiological studie
[5, 116]. The most frequently reported mechanism suggest:
parallel, but time-coupled evolution of the reach and gras
motions. However, directly mimicking this behavior makias t
system time-dependent and hence unlikely to handle terhpc
perturbations.

In this work, we use PbD as a means to encode the dynan
of reach-grasp motion and the coupling information in a con
pact way. We present the Coupled Dynamical System (CD
task modeling approach to coordinate the motions of ha
transport and preshape without being explicitly dependent
the ow of time. We also show that this method ef ciently

TABLE |
GAUSSIAN MIXTURE REGRESSION

Let us assume that a process is characterized by some owtroduced by input ; at
each time step and our aim is to have a regression model for the same inpoistpuns.
To this end, we model the joint probability of input and output vagsahilsing Gaussian
Mixtures. The probability that a full data point=[ |; o] is generated by this process

is de ned by
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where X contains the parameters viz. priors, centers X and covariancesX to de ne

the gaussian distributiod ( ; k) for thek™ gaussian. Separating the input and output
components, the parameters can be further represented as
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Gaussian Mixture Regression allows to compute for a given input varialded a given
componenk, the expected distribution ofo as
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Using the linear transformation of gaussian distributions, the camditiexpectation of
o given | can be re-written as a single normal distribution with the parameters
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handles on-the-y perturbations by incorporating infotioa vector and its velocities are recorded at particular tinterin
from perturbed human demonstrations. We conduct expevals, yielding the data sét |,; -1 g8t 2 [0; T,];n 2 [L;N]. Ty,
ments on the iCub robot which show that this coupling idenotes the number of recordings in the n-th demonstration.
necessary in order to successfully complete the tasks un@dthout loss of generality, we assume that the dynamicsef th

perturbations of different types.

I1.
In this section, we start with a short formalism of au-

M ETHODOLOGY

tonomous dynamical system (DS) in the context of robotic

manipulation tasks and its estimation with a Gaussian Meéxtu

task can be represented by a rst order autonomous Ordinary
Differential Equation (ODE):

—=f( )+ 1)

Model (GMM). For more details on this the reader is referretheref : RY 7! R is a continuous and continuously differen-
to Gribovskaya and Billard [9]. We present an extension figble function with a single equilibrium point = f( ) =0

this formulation and introduce the notion of coupling beswe @nd  represents white gaussian noise. It is evident from the
different DS by the means of a coupling function. A formaformulation of DS that it does not explicitly depend on time
discussion of the CDS model is presented describing tABd hence is robust towards temporal perturbations. Toléand
modeling process and regression algorithm to reproduce @Ratial perturbations, i.e. sudden displacement of thyetar
task. A simple 2D example is presented to establish inwitifh€ manipulator, we consider in the reference frame of the

understanding of the working of the CDS model.

A. Preliminaries

target.

By estimating the functionf, we can have a compact

mathematical description of the task as a Dynamical System.
Consider a state vector(t) 2 R® which can be used to For this purpose, we use GMM to encode the demonstrated
uniquely de ne the state of the robot while performing a taskajectories in a probabilistic framework. The core asstiomp
(e.g. joint angles, position and orientation of the ene&ffr when representing a task as a Gaussian Mixture Model is that
etc.). Let there be N demonstrations of the task where the staach recorded point(t) from the demonstrations is a sample



Learned GMMs Master Sub-System  The CDS model derives inspiration from the biological
pf h i evidences of reach-grasp coupling [7.] 16]. These studies
wZE P i m advocate the fact that there is a parallel, but time-coupled
evolution of these sub-tasks combined with synchronized
termination constraints. E.g., if the ngers close befohe t
hand reaches the object, the task fails. Moreover, thisrorde
needs to be maintained under spatial, temporal and grasp-ty
perturbations. Another example of a situation where coigpli
is needed is that of change in grasp type. When the required
grasp type is changed on the v, if the change occurs from a
low-aperture grasp to a high aperture grasp, a full reogenin
h i may be needed which is only possible if the coupling is active
s=EP s s 7 We rst formally discuss the CDS model in subsections
N " describing the model creation and the procedure for task
M R R execution. To establish intuitive understanding, we prese
2D example as a representative of higher dimensional grgspi
Slave Sub-System tasks. Subsequently, we show that the CDS model retains the
global stability endowed in the individual GMMs bstable
Fig. 2. Task execution using CDS model. Blue region shows Hreet astimator of dynamical systen{SEDS) Khansari-Zadeh and
Gaussian Mixture Models which form the full CDS model. Greegion . 3 .
shows the master sub-system where the cartesian positidre abbot end- Billard [1‘] and the fact that different GMMs are COUpIed

effector evolves in time as a DS and is continuously fed to tet. Magenta using a coupling function does not affect the overall sigbil
region shows the slave sub-system where the nger jointemgVolve intime of the model.

as a DS, but also in uenced by the state of the master systenfeahtd the e
robot. Coupling is ensured by passing selective statermdtion in the form 1) Model Building: Let r, denote the state of the master

of ( m) as shown in red. sub-system and ¢ that of the slave sub-system in their
respective goal reference frames. Consider theGef all
objects for which grasping behaviors are demonstrated. The
following three joint distributions are learned as expéalrin

m m+—mt

6 9 o d]

drawn from the joint distribution:

Table.[] -
P(j)= X kN - K- 1) P m; - & :encoding the dynamics of the master
- ' 2) P(( m); si 2): encoding the inferred state of the

slave conditioned on the master (we will refer to this
guantity as”)
3) P s i ?,yn : encoding the dynamics of the slave

As detailed in Tabléll, this model makes it possible to perfor
probabilistic regression for the value of output variable
given the value of input variable, at each time instant. E.g.,
as applied in previous works![9,112] in the special case 8f 2 G. Here : RY 7! R denotes thecoupling function
learning dynamics, the desired state velocities can beeglierwhich is a monotonic function of,, with the constraint
conditioned on the current state. Note that in this speciaéc im ( m)=0 @
which models only the dynamics of the task, the partitions m! O m

, and , correspond respectively to the spatial positions aréq]d dn,
velocities of the robot's end-effector. Since this is novays
the case in the CDS model, we will keep this generalized f
now and de ne the partitions for the different components

denotes the dimension of the master sub-system.
The purpose of the coupling function is to transfer relevant
Mformation between the sub-systems so as to ensure cguplin

. . " Detween them. The distributions for learning dynamics. (i.e
the coupled model in later subsections. In the next sectio

S
. g . i og ; ;

we show that the CDS model harnesses much more from ?ﬁe m: -m) m andP s dyn ) is learned using SEDS

GMM than just states and velocities by learning the couplirfV€n Py which produces globally stable model but can only

information in addition to the dynamics. handle models withj j = j oj. On the other hand, the
distribution P (( m); sj ) is learned using non-linear
B. Coupled Dynamical System programming to t gaussians to the data under the constraint
In the classical case of learning position and orientation lim E[ sjx] = O: 3)
x! 0

dynamics, one GMM each for hand and nger motions would

suf ce to model the dynamics. However, to model a reachi the context of reach to grasp tasks studied in this wowk, th
grasp with hand-arm coordination, it is required to have raaster sub-system corresponds to reaching motion with stat
more complex approach. Note that Gribovskaya and Billake:ctor as the cartesian position of the end-effector. Theesl
[9] have used a coupling between position and orientation sub-system corresponds to the motion of the ngers withestat
the inverse kinematics. However, the main purpose served\mctor as the nger joint angles. Note that the same model can
this approach was to avoid unfavorable joint postures be used with orientation variables (Euler angles or Axigkan
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Fig. 3. GMMs which combine to form the CDS model for the 2D exanif#§ shows the human demonstrations. Large number of dataspmiotind the
end of trajectories depict very small velocitifs:] (b) sholes GMM encoding the velocity distribution conditioned o fhosition of master sub-systeny §.
shows the GMM encoding the desired value pf(i.e. 3 ) given the current value ofx as seen during the demonstratidns] (d) shows the GMM encoding
the dynamic model for the slave-subsystem)( Legend fo (d) holds for all.

representation) and hence can be used to couple orientafié@orithm 1 Coupled task execution
control with position control by having another slave subdnput: 1 (0); s(0); &; 2.; &

t;

inf > dyn; ;o
system. Sett =0
2) Reproduction: While reproducing the task, the model repeat:
essentially works in three phasdacrement mastet Infer if perturbationthen
slave ! Increment slave The master sub-system evolves updateg 2 G

in time independently and the corresponding end-effector end if

commands are issued to the robot. Moreover, it modulates the Increment Master:  m(t) P mj m; §

commands for the _sIavg system whigh also evolves in a similar m(t+1)= L (O)+ () t

way but while sha}rlng |nf0rm§tlon with the master ;ubsystem Infer Slave: ~(t) P JC m): &

due to the coupling mechanism. Filg. 3 shows this ow of

information among the sub-systems and the robot. Such a IncrementSlave: () P sj s T 5 g

scheme is desired since it ensures that any spatial, teinpora

or grasp-type perturbations are re ected appropriatehalin s(t+1)= <)+ () t

the sub-systems. The process starts by generating a yelocit t t+1

command for the master sub-system and thus increments thentil:  Convergence ks(t)k< — and k.m(t)k<

state by one time step( ) transforms the current state of

the master sub-system which is fed to the inference model tha

infers the desired state of the slave sub-sytem by conditpn

the learned joint distribution on the appropriate variafilee Sub-systems controlling the motion of the end-effector and

velocity command to drive the slave sub-system from tt{e ngers. For simplicity, we consider 1-D cartesian piosit

current state to the inferred (desired) state is generaged kb a@s the master variable and 1 nger joint angle as the

GMR conditioned on the error between the two. The slawdave variable, both expressed in the goal reference frame s

sub-system achieves a new state and the cycle is repedhsd they converge to the origin. In this way, the full edged

until convergence. Note that if at any instant, the robot Brasping task is just a higher dimensional version of this

presented with a different object for which the grasping elodcase by considering 3-dimensional cartesian positioreaust

is stored in the seB, we select the corresponding CDS mode?f x and all joint angles (or eigen-grasps) of the robot hand

and continue the same Operations using master and s|mead of ;. For reference with the formal description of the

components. Algorithrl]1 explains the complete reproducti¢DS model we re-iterate the following equivalences in this

process in a pseudocode. example: n x (master variable),s ¢ (slave variable),
Note that the coupling function( m) also acts as a ( x) x (coupling function) anddm = 1. Note that in

phase variable which updates itself every time step and gjfferent tasks, depending on the nature of coupling iredéht

the event of a perturbation, will command the slave systefimensions of the master variable, other coupling funstion

to re-adjust so as to maintain the same correlations asdéarfan be used.

from the demonstrations. Two other parameters governiag th Under the given setting, typical demonstrations of reach-

coupled behavior are scalars > 0. Qualitatively speaking, grasp task are as shown in Fig._3(a), where the reaching

they respectively control the speed and amplitude of tt@otion converges slightly faster than the nger curl. We

robot's reaction under perturbations. E.g., in the experita €xtract the velocity information at each recorded point hite

presented in Sectidn]V, they control the speed and the extéifferencing and build the following models from the resuit

of re-opening of ngers when the target is changed to a farthdata: P ; «j x P (x; t] it ) @andP ;%] ayn

location. The resulting mixtures for each of the models is as shown
Example. Suppose we represent a reach-grasp task as timoFig. [3. For reproducing the task, instead of the earlier
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Fig. 4. Reproducing the task under the CDS model. The reptimiuc Fig. 6. Change in affecting the nature of streamlines. Largemwill tend
(dashed) is overlaid on the demonstrations for reference.riiddel is run for to bring the system more quickly towards the ; ;) locations seen during
different values and the ow of the state values in time is depicted by théemonstrations.

arrows. It is evident that the model tries to track the desikedblue) values

at the current x by reversing the velocity in; direction. The tracking is |
more stringent for larger .
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Fig. 7. Task reproduction with and without coupling show(aj state space,
[(B) time variation. Dotted lines show the uncoupled task etien. Note the
difference in the directions from which the convergenceuegdn the two
H : cases. In the coupled execution, convergence is faster than in ¢ . In the
* Time'Steps ~ 7 " " “Time'steps” " 7 uncoupled case it is just opposite.
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Fig. 5. Variation of obtained trajectories with and . Vertical red line
shows the instant of perturbation when the target is sugidenshed away
along positive x direction. Negative velocities are generated jnin order
to track . Speed of retracting is proportional to (left) and amplitude is

evolving under Algorithni 1l is globally stable.

proportional to  (right). Denition. A CDS model is globally asymptotically

stable if by starting from any given initial conditions, (0),
s(0) and coupling parameters; 2 R the following

approach presented in [§] where the sysiem evolves under toaditions hold:

velocities computed aE (; +)j( x; ) we proceed as Jim m(®)=0 (4a)

in Algorithm [I. Fig.[4 shows reproduction of the task in the '

( x; ) space overlaid on the demonstrations. It clearly shows lim s(t)= 0 (4b)

that a perturbation iny creates an effect ir , viz. generating ti

a negative velocity the magnitude of which is tunable usingo prove that the CDS model indeed follows the conditions
the parameter. This change is brought due to the need[£)f we use the properties of its individual components. The
tracking the inferred values i.e.s, at all x. ¥ is nothing condition[4& holds true due to the global stability of SEDS.
but the expected value of given x as seen during the To investigate the stablllty of the coupling, we consider
demonstrations. The time variation gf and its variation with h h

and is shown in Figb. modulates the speed with which  im E 5 ( m) = E%  lm
the reaction to perturbation occurs. On the other hand, a hig
value of increases the amplitude of retracting. Fily. 6 shows E % lim ( m) (Byld)
the streamlines of this system in order to visualize the glob h T
behavior of trajectories evolving under the CDS model. The E <j0 (ByEq.[2)
CDS model run is compared to uncoupled task execution in 0 (By Eq.3) (5)
Fig.[@. It shows the behavior when the same perturbation is
introduced on the abscissa in both coupled and un-coupledlh® model which governs the evolution of the coupled
executions. Clearly, the unperturbed variable if this case) variable s is given by h
does not react when there is no coupling and also the order of
convergence is not the same as in the demonstrations where
x converges faster than . Taking the limiting values and using Eg. 5 , we get

3) Stability and ConvergenceWe rst de ne the notion _ h
of global stability in CDS and then prove that the process t!'lm == E <] s (6)

i
s=E 5 s s



which is again globally asymptotically stable due to SEDS8 ar o

hence will drive the states asymptotically to0. However, as 5
seen from Algorithni1l, the multiplier boosts the velocity =7 - g ,
before incrementing the state. It is trivial to see that thies 15l {--Mean Predicted by CDS
. . . . :Ells Variance Predicted by CDS
not affect the global asymptotic behavior of the model sinc ‘ ‘ {—Human recordings during unperturbed demo
. S AHA T A+A T - . . 0.4 50 100 150 200 250 300
negative de nite=5— )  =5— is also negative de nite for : :
> 0. Why such a condition is required for global stability =%

is proved in detail in[[12]. 02

~
0.1

IV. EXPERIMENTS AND RESULTS

G0 50 100

. 150

In this section, we describe the experiments for recordir Time Steps
human demonstrations under random perturbations. We show

that the CDS model is indeed qualitatively equivalent to the o , o

demonstrated human behavior of grasping under perturtmtig'g' 8. A gualitative comparison of CDS model predictions & thferred

. . . . . nger joint angles and the actual recorded human behaviote Kwe coupling
and it is suited to handle fast perturbations which typicallsf joint angles with the distance from the target. A changéaiget location

need re-planning and are dif cult to handle online. From thtiggers a discontinuous shift in the value lof  Xgoa k and at the same
experimental data, we identify relationships to infer theef {me. starts reopening of the ngers.

parameters of the CDS model. Unlike the example presente
in Section[ll, we used the coupling functiof :) = jj:jj ‘
for all the task runs on the robot. We divide the discussiol |
into subsections describing the experimental setup, gatwne
results/inferences from the experimental data and taslorep [ . .
ductions on the iCub simulator as well as the real robot ti SubLl ' T T e
validate the modgl (@) (b)

Il
200 250 300

+Subject 1
*Subject 2
+Subject 3

A. Experiments Fig. 9. [(@ shows the linear correlation found between meami halocity
. . prior to perturbation and . Tp refers to the time at which perturbation is
The experimental setup to record human demonstrations aitduced[{H) shows the linear correlation found betweeand .

create sudden perturbations is shown in Elg. 1. It consists o

two stationary targets and the on-screen target selectmhwh

prompts the human Subject to reach and grasp one of thé\fter all the data is collected, we learn the CDS model from
objects depending on the color shown on the screen. The iGhB data recorded in the unperturbed trials. This servebeas t
simulator runs simultaneously while the human is perfogmirPase model which qualitatively mimics human behavior under
demonstrations in order to establish correspondence for fgrturbations. Figll8 shows typical human responses of the
human subject. To start the experiment, one of the targe®ger joint angles (only index nger proximal joint is shoyn

is switched on and the subject starts to reach towards t#eder perturbation of the target. The vertical red line raark
corresponding object aiming for a particular grasp depepdithe onset of perturbation and the subsequent dip in the joint
on the object. In random trials (without the knowledge of thangles is due to the re-opening of the ngers when the tasget i
subject), perturbations are introduced by abruptly svirigh suddenly moved away. Note that in all the trials, the ngesr
the on-screen target selector. Reacting to this change, @Rened irrespective of the fact that the aperture of the rage
subject starts to adjust the motion of hand and ngers in ordat the time of perturbation was large enough to accommodate
to reach the other target. The subject forms a grasp arowend e object. This behavior was found common to all subjects.
nal target which marks the end of the trial. All the motionlt is evident from Fig[B that the nger joint angle inferreg b
data i.e. hand position, orientation and nger joint angies CDS at each time instant is similar to what is exhibited by
recorded throughout the trial at a frequency of 50 Hz. Aftdlumans within the variance of demonstrations.

each trial, the sgbject is asked. to go to a rest po_sture Wh%r.eCaIcuIation of model parameters
a 5 sec. calibration procedure is done for the motion sensors , ,

and data-glove. Trials are run until at least 10 unpertudreti As illustrated '_n sectior TII-B, the para'meters a”‘,‘

10 perturbed trials are obtained. Learning from pertudpeti "€Present respectively the speed and amplitude of theioeact
enables the estimation of parameterand so that they can (IN this case, reopening of ngers) to perturbation. Inseh
be predicted prior to the instant of perturbation at the tohe Ccauses the nger trajectories to follow the inferred (des)r
task reproduction. In addition to this, we also learn the CD¥ues more strictly, hence, a sharp decrease in the joifit va
model for pinch grasp and populate the set of gra@pNote ables is observed. On the other handnodulates the inferred

that arbitrarily many grasps can be learned and added to ffdue itself. Hence, a manually tuned combination of theitwo
set. suf cient to generate any given behavior after the perttidoa

However, as shown in Fid.] 9, it was found that there exist
lvideos are available at http://www.youtube.com/user/ToteRticsVideos ~ correlations which make it possible to predict their valtms


http://www.youtube.com/user/TheRoboticsVideos

(1)

(@) Coupled (b) Uncoupled 2l «

) . ) ) . 10 4” -=-Actual (before perturbation)
Fig. 10. Reach-grasp task executions with and without d¢ogplin the | ..~ : = Inferred (pinch grasp)

. . . . . o x ~—Actual (after perturbation)
coupled executiof (R), ngers maintain the correlationsnsering the - xInferred (power grasp)
demonstrations which prevents premature nger closure. Theoupled R o5 0 15 T_zo‘ © 75 30 35 X

ime (s,

executior] (B), ngers close early and the grasp fails.

Fig. 13. Motion of one nger joint angle under grasp-type tpebation.
Demonstrated models for the two grasps recorded during therwwmped
demonstrations are shown. The CDS model switches smoothlyebatthe
models when the perturbation occurs.

against gravity so that it starts falling. This requires atfa
adaptation from palm-down to palm-up grasp, while the targe
Fig. 11.  Closeup of hand motion post perturbation in coupleét)(and keeps on moving. Note that we use the approach presented in
uncoupled ifght) executions. Note the re-opening of ngers leading to 3previous work on ball catching by Kim et al:l13] to ensure
successful grasp in the coupled case. . . . L

that the robot intercepts the falling object in its workspac
Here the contribution of the CDS model is to re-adjust the

a human just by observing the motion of the hand prior fdand orientation and nger curl online S0 that the grasp.is
the perturbation. Fid- 9(a) shows there is a linear relatign completed succes_sfully on the fgllln_g object._The task ¢pein
between the velocity of the hand prior to perturbation are tierformed by the iCub in simulation is shown in Fig] 12. Note
parameter . It shows that the faster a subject moves toward8at theé ngers close proportionately as the distance betwe
the target, the less they reopen the ngers upon pertumbatidh€ falling ball and the robot hand decreases, maintairfieg t
Fig.[0(B) shows the linear correlation between the par(,m.‘et.go_rrel.atlons seen during t.he demonstrations. The timesethp
and . It shows that a faster reopening of the ngers i&S indicated on the gure in seconds. y

accompanied by a larger amount of reopening. Consequently/Vé perform another task showing the ability of the CDS
both the parameters and can be predicted based on thdlodel to adapt between pinch and power grasps. We learn

motion of the hand prior to perturbation. Hence, they no esngPinch and power grasps from demonstrations as shown previ-
need to be speci ed manually in Algorith 1. ously and change the target object while the robot goes éor th

pinch grasp. Fig_13 shows the motion of robot's index nger

C. Validation proximal joint. It is evident that the hand aperture decesas
Jickly when the robot aims for the pinch grasp but after
switch, the robot smoothly switches from following the

We validate the CDS model by executing the learned gra:

ing strategies on the iCub robot. First we show that graspi . )
under perturbations using the uncoupled approach fails dRf8ch-grasp model requiring smaller hand aperture (irgefa

to lack of knowledge of the correlations between the read@int value) to the power grasp model which requires a larger
and grasp sub-systems. Fig] 10 shows such comparison. fRgrture (smaller_Jomt _value). _The model can also_ be seen to
robot starts moving towards a xed target which is suddenf€ robustly handling different instants of perturbation.
shifted to the right just before the completion of the tagkthie
uncoupled case (Fif. I0{b) ), the ngers close too early &ed t
task fails. In the coupled case (F[g. I0(a)), the nger motio In this paper we presented a model for encoding and repro-
is delayed due to the coupling and the ngers close accordidgcing grasping strategies which is capable of handling fas
to the correlations learned during the demonstrations.[Elg real-time perturbations. Biological inspiration was takiey
clearly shows the re-opening of ngers. observing the correlations between arm and nger motion dur
Next, we show that the presented scheme also enables onilitgehuman experiments of reach-to-grasp tasks under sudden
adaptation against fast perturbations of grasp-type. \&@mle unpredicted perturbations. We showed that once the gmspin
power grasps in palm-up and palm-down con gurations dftrategies are taught of ine by a human demonstrations, the
the hand from unperturbed demonstrations and populate thedel is able to reliably switch between those under very fas
set of graspsG with them. In the reproduction phase, theerturbations. Re-opening of ngers under perturbatios ha
robot starts moving towards the target aiming for the palnbeen found to be present in all human trials and is shown to be
down con guration grasp. After a certain period, the objisct critical to the success of reach-grasp tasks. Our modekressu
made to reappear at another location, however not supportiid behavior even in the presence of arbitrary perturbatio

V. CONCLUSION



Fig. 12. Fast adaptation under perturbation from palm-dawpalm-up power grasp. Torso is included in the inverse kinesab increase the workspace
of the robot so as to highlight the effectiveness of the modeldapting the grasping motion under very fast perturbations
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