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Abstract—Robustness to perturbation has been advocated as
a key element to robot control and efforts in that direction are
numerous. While in essence these approaches aim at “endowing
robots with a flexibility similar to that displayed by humans”,
few have actually looked at how humans react in the face of
fast perturbations. We recorded the kinematic data from human
subjects during grasping motions under very fast perturbations
Results show a strong coupling between the reach and graspFig. 1. Experimental setup to record human behavior undeuretions.
components of the task that enables rapid adaptation of the Two fixed targets are accompanied by the on-screen targatt@elehich
fingers in coordination with the hand posture when the target activates different targets by changing colors and heneatera spatial
object is perturbed. We develop a robot controller based on perturbation. The subjgct wears motion sensors and date g\Vt_m_:h record
Coupld Dynamical Systems that expoits coupling between (o 18 ¥ile ATihand knematce o ed the nenvat, Tie kemaiues
dynamical systems driving the hand and finger motions. This - y
offers a compact encoding for a variety of reach and grasp
motions that adapts on-the-fly to perturbations without the neel

for any re-planning. To validate the model we control the motion . . . .
of the iCub robot when reaching for different objects. handling spatial and temporal perturbations. In this warg,
address the problem of having a combined encoding scheme

. INTRODUCTION for both reaching and grasping behaviors capable of adgaptin

Performing manipulation tasks interactively in real eamir against realtime perturbations during task reproductibn.
ments requires a high degree of accuracy and stability. &t worth mentioning here that this entails more complexity
the same time, except in completely determined and stafitan two independent attractor based tasks. Human neuro-
environments, machine perception of the environment matysiological studies_[5./ 7] have shown that apart from the
suffer from real-time perturbation. To handle these, iuiegs parallel evolution of hand transport and preshape, theist ex
flexibility on the part of the robot. These considerationskena convergence constraints and correlations between the rtwvo p
the task of reaching to grasp under fast perturbations diiffic cesses. In addition to the advantage of “human-like” mgtion
to deal with. Planning of constrained grasping motions hisis critical to maintain the coupling between hand and arm
often been studied as two separate problems of graspmgtion while performing a task in order to ensure successful
[15, 3] and generating arm-motion| [2,111] i.e., decouplingrasp formation at the target. In addition to studying the
the reach and grasp components. The high dimensionalityrrelations in the unperturbed human behaviors of peifuaym
and complexity of these problems has discouraged the usgrasping task, we also study perturbed demonstrations of
of a single coherent framework for carrying out both thBuman subjects in order to biologically inspire our apphoac
tasks. Constrained motion planning for only the reachirgf handling perturbations. We present the Coupled Dynamica
motion in high dimensional arm-hand systems is a challengisystem (CDS) model which ensures that the motion con-
problem itself and requires the use of predefined heuridtics straints mentioned above are respected and at the same time
Programming by Demonstration (PbD), these heuristics agasures very fast adaptation under perturbations.
embedded in the demonstrations provided by a human agent
which can be used to generate a generalized task description
[4]. Classically, the behavior of reaching to grasp objects has

In previous work Gribovskaya and Billard|[9] have usedeen treated as two different problems. Especially in nmotio
PbD to encode the dynamics of a task as a Dynamical Systptanning works, reaching to a pre-grasp pose and motion of
(DS) where the end effector of the robot moves under thiee hand and fingers are considered as independent processes
influence of an attractor positioned at the target. It hasibeand are triggered sequentially |2,/ 10/ 18]. Although both th
shown that such an approach ensures reproduction of tegues of reaching to a pre-grasp pose and formation of grasp
learned behavior in a generalized manner while efficienthround arbitrary objects are intensively studied, very [BwE]
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have looked into combining the two so as to have a unified

reach-grasp system.

Most manipulation planners typically plan paths in th
configuration space of the robot using graph based techsiqgt
Classical approaches use probabilistic roadmap and isniar
[6, 117] which assume a predefined and static environme
and are unable to handle any perturbations at the run-tin
Moreover, they require huge preprocessing steps and are
suitable for replanning of grasping tasks online. More ntge
LaValle and Kuffner|[14] proposetbpidly exploring random
trees RRTs as a faster alternative to manipulation plannir
problems, provided the existence of an efficient inverse-kin
matic (IK) solver. RRT based methods [2, 18] are current
the fastest online planners which exploit the efficient cleiaig
ability of RRTs in order to find suitable paths between thet ste
and the goal configurations. Note that a major drawback of
graph based approaches is that they lose to retain any iéxp
correlations that exist between the two processes of ha
transport and preshape as naturally performed by humans.

The concept of coupling between the reach and gra
motions is inspired by evidence in physiological studie
[5, 116]. The most frequently reported mechanism suggest:
parallel, but time-coupled evolution of the reach and gra:
motions. However, directly mimicking this behavior makies t
system time-dependent and hence unlikely to handle terhpc
perturbations.

In this work, we use PbD as a means to encode the dynam
of reach-grasp motion and the coupling information in a con
pact way. We present the Coupled Dynamical System (CD

task modeling approach to coordinate the motions of ha.

transport and preshape without being explicitly dependent

TABLE |
GAUSSIAN MIXTURE REGRESSION

Let us assume that a process is characterized by some @upubduced by inpu€, at
each time step and our aim is to have a regression model for the same inpotstpuns.
To this end, we model the joint probability of input and output vagahising Gaussian
Mixtures. The probability that a full data poi§t= [£; £o] is generated by this process
is defined by
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where@” contains the parameters viz. prier§, centerg.* and covariances* to define
the gaussian distributiaN (&; 0’“) for thekt" gaussian. Separating the input and output
components, the parameters can be further represented as
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Gaussian Mixture Regression allows to compute for a given input vagalaed a given
component:, the expected distribution &fo as
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Using the linear transformation of gaussian distributions, the camditiexpectation of
&0 giveng, can be re-written as a single normal distribution with the parameters
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the flow of time. We also show that this method efficiently
handles on-the-fly perturbations by incorporating infotiora vector and its velocities are recorded at particular tinterin
from perturbed human demonstrations. We conduct expevals, yielding the data sdt’ , &£ V¢ € [0,T,];n € [1, N]. T,,
ments on the iCub robot which show that this coupling idenotes the number of recordings in the n-th demonstration.
necessary in order to successfully complete the tasks un@dthout loss of generality, we assume that the dynamicsef th
perturbations of different types. task can be represented by a first order autonomous Ordinary
" Differential Equation (ODE):

In this section, we start with a short formalism of au- ¢
tonomous dynamical system (DS) in the context of robotic
manipulation tasks and its estimation with a Gaussian Meéxtu
Model (GMM). For more details on this the reader is referreheref : R — R is a continuous and continuously differen-
to Gribovskaya and Billard [9]. We present an extension fible function with a single equilibrium poigt = f(£*) = 0
this formulation and introduce the notion of coupling beswe a@nd e represents white gaussian noise. It is evident from the
different DS by the means of a coupling function. A formaformulation of DS that it does not explicitly depend on time
discussion of the CDS model is presented describing tABd hence is robust towards temporal perturbations. Toléand
modeling process and regression algorithm to reproduce &Ratial perturbations, i.e. sudden displacement of thyetar
task. A simple 2D example is presented to establish inwiitifh€ manipulator, we considgr in the reference frame of the
understanding of the working of the CDS model. target.

By estimating the functionf, we can have a compact
mathematical description of the task as a Dynamical System.

Consider a state vect@(t) € R? which can be used to For this purpose, we use GMM to encode the demonstrated
uniquely define the state of the robot while performing a taskajectories in a probabilistic framework. The core asstiomp
(e.g. joint angles, position and orientation of the ene&fir when representing a task as a Gaussian Mixture Model is that
etc.). Let there be N demonstrations of the task where the staach recorded poirg(¢) from the demonstrations is a sample
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Learned GMMs Master Sub-System  The CDS model derives inspiration from the biological
pf evidences of reach-grasp coupling |7, 16]. These studies
‘ ém=E [77 (ém |£m)] advocgte the fact that there is a pgrallel, .but time—coupled
P(gm,gm |0m) evolution of these sub-tasks combined with synchronized
Em — Em + EmAL termination constraints. E.g., if the fingers close befdre t
hand reaches the object, the task fails. Moreover, thisrorde
needs to be maintained under spatial, temporal and grasp-ty
perturbations. Another example of a situation where coigpli
is needed is that of change in grasp type. When the required
grasp type is changed on the fly, if the change occurs from a
low-aperture grasp to a high aperture grasp, a full reogenin
- may be needed which is only possible if the coupling is active
: (65 —65))} We first formally discuss the CDS model in subsections
P (&€ 10am ) e :
€« €1 EAL describing the model creation and the procedure for task
M ° S execution. To establish intuitive understanding, we prese
2D example as a representative of higher dimensional grgspi
Slave Sub-System tasks. Subsequently, we show that the CDS model retains the
global stability endowed in the individual GMMs bstable
Fig. 2. Task execution using CDS model. Blue region shows Hieet oqtimator of dynamical systems (SEDS) Khansari-Zadeh and
Gaussian Mixture Models which form the full CDS model. Greegion . 3 .
shows the master sub-system where the cartesian positidreabbot end- Billard [12] and the fact that different GMMs are coupled

effector evolves in time as a DS and is continuously fed to twet. Magenta using a coupling function does not affect the overall sigbil
region shows the slave sub-system where the finger joineareylolve in time  of the model.

as a DS, but also influenced by the state of the master systerfeadrid the R
robot. Coupling is ensured by passing selective staterimdtion in the form 1) Model Building: Let &, denote the state of the master

of ¥(&,,) as shown in red. sub-system andt, that of the slave sub-system in their
respective goal reference frames. Consider thegsef all
objects for which grasping behaviors are demonstrated. The
following three joint distributions are learned as expéairin
Table. -

1) P (5m,ém\0gl): encoding the dynamics of the master

2) P(¥(&n),&5]00¢): encoding the inferred state of the
slave conditioned on the master (we will refer to this
quantity asf)

3) P (5S,és|egyn): encoding the dynamics of the slave

/

P (¥ (6n) €10 ) 1€ =E[P (& |¥ (¢m))]
[&

¢ —FE [P (5
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drawn from the joint distribution:

K
P(£6) => 7N (&6%).

k=1
As detailed in Tabl€l |, this model makes it possible to penfor
probabilistic regression for the value of output varialgle
given the value of input variablg at each time instant. E.g.,
as applied in previous works|[9,112] in the special case & € G. Here ¥ : R%~ — R denotes thesoupling function
learning dynamics, the desired state velocities can beigglierwhich is a monotonic function of,, with the constraint
conditioned on the current state. Note that in this speciaéc glimo‘l’(é'm) _0 @

m—

which models only the dynamics of the task, the partitions
& and§, correspond respectively to the spatial positions ar}fhd d,, denotes the dimension of the master sub-system.
The purpose of the coupling function is to transfer relevant

velocities of the robot’s end-effector. Since this is natafs
formation between the sub-systems so as to ensure cguplin

the case in the CDS model, we will keep this generalized f
now and define the partitions for the different components BLtween them. The distributions for learning dynamics, (i.e
andP (58753\09 ) is learned using SEDS

the coupled model in later subsections. In the next sectio% - 19
we show that the CDS model harnesses much more from .45"“5"”' mz‘ dyn
produces globally stable model but can only

GMM than just states and velocities by learning the couplirffven Py whic

information in addition to the dynamics. handle models with|§| = [&]. On the other hand, the
distribution P (¥ (&,,),&5]60;) is learned using non-linear
B. Coupled Dynamical System programming to fit gaussians to the data under the constraint
In the classical case of learning position and orientation lim E [¢,|x] = 0. 3)
xz—0

dynamics, one GMM each for hand and finger motions would

suffice to model the dynamics. However, to model a reachn the context of reach to grasp tasks studied in this womk, th
grasp with hand-arm coordination, it is required to have raaster sub-system corresponds to reaching motion witk stat
more complex approach. Note that Gribovskaya and Billake:ctor as the cartesian position of the end-effector. Theesl

[9] have used a coupling between position and orientation sub-system corresponds to the motion of the fingers witle stat
the inverse kinematics. However, the main purpose served\mctor as the finger joint angles. Note that the same model can
this approach was to avoid unfavorable joint postures be used with orientation variables (Euler angles or Axiglan
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(a) Demonstrations (b) P <§z \{z> © P (&5 l€z) (d) P <£f |§f)

Fig. 3. GMMs which combine to form the CDS model for the 2D exanif#§ shows the human demonstrations. Large number of datespmiotind the
end of trajectories depict very small velocitifs] (b) sholaes GMM encoding the velocity distribution conditioned o ghosition of master sub-syster§.
shows the GMM encoding the desired value gf(i.e. £¢) given the current value of, as seen during the demonstratidns] (d) shows the GMM encoding
the dynamic model for the slave-subsystegn)( Legend fof(d) holds for all.

representation) and hence can be used to couple orientafié@orithm 1 Coupled task execution
control with position control by having another slave sublnput: &,,(0); £5(0); 69,; 67 ,; 09 . o; B; At; €
system. Sett =0
2) Reproduction: While reproducing the task, the model repeat:
essentially works in three phasdscrement master — Infer if perturbation then
dave — Increment slave. The master sub-system evolves updateg € G
in time independently and the corresponding end-effector end if ) _
commands are issued to the robot. Moreover, it modulates the Increment Master: &, (t) ~ P <€m|€m; 9,971)

inf? yn?

commands for the slave system which also evolves in a similar Em(t+1) = &nlt) + &nlt)At
way but while sharing information with the master subsystem | rer gave: Es(t) ~ P (&|W (&) ;07 )

due to the coupling mechanism. Fig. 3 shows this flow of , _ Tt
information among the sub-systems and the robot. Such a IncrementSave:  &(t) ~ P (&8 (55 —Es) %“)gyn)

scheme is desired since it ensures that any spatial, teinpora .

or grasp-type perturbations are reflected appropriatelgllin Es(t+1) =&(t) + aks(t)At

the sub-systems. The process starts by generating a yelocit ¢« t+1 ) )

command for the master sub-system and thus increments thentil:  Convergence  ([|€:(t)]| <€ and ||&,.(¢)]] < 6)

state by one time step/(&,,) transforms the current state of

the master sub-system which is fed to the inference model tha

infers the desired state of the slave sub-sytem by conditpn

the learned joint distribution on the appropriate variafilee Sub-systems controlling the motion of the end-effector and

velocity command to drive the slave sub-system from ttige fingers. For simplicity, we consider 1-D cartesian posit

current state to the inferred (desired) state is generaged & as the master variable and 1 finger joint angjeas the

GMR conditioned on the error between the two. The slawdave variable, both expressed in the goal reference frame s

sub-system achieves a new state and the cycle is repedhsd they converge to the origin. In this way, the full fledged

until convergence. Note that if at any instant, the robot Brasping task is just a higher dimensional version of this

presented with a different object for which the grasping elodcase by considering 3-dimensional cartesian positioreaust

is stored in the sef, we select the corresponding CDS mode?f &. and all joint angles (or eigen-grasps) of the robot hand

and continue the same Operations using master and sm,@ead Offf. For reference with the formal description of the

components. Algorithrfl]1 explains the complete reproducti¢DS model we re-iterate the following equivalences in this

process in a pseudocode. example:{m =<, (master variable){;’s = gf (slave Variable),
Note that the coupling functionk(¢,,) also acts as a Y(§z) = & (coupling function) andd,, = 1. Note that in

phase variable which updates itself every time step and gjfferent tasks, depending on the nature of coupling iredéht

the event of a perturbation, will command the slave systefimensions of the master variable, other coupling funstion

to re-adjust so as to maintain the same correlations asdéarffian be used.

from the demonstrations. Two other parameters governiag th Under the given setting, typical demonstrations of reach-

coupled behavior are scalats3 > 0. Qualitatively speaking, grasp task are as shown in Fig._3(a), where the reaching

they respectively control the speed and amplitude of tteotion converges slightly faster than the finger curl. We

robot’s reaction under perturbations. E.g., in the expenita extract the velocity information at each recorded point hitdi

presented in Sectidn]V, they control the speed and the extéifferencing and build the following models from the regugt

of re-opening of fingers when the target is changed to a farthiata: P (gz, [ |9$), P (&, &5 |0ing ) and P (ff, 5 |0 ayn )

location. The resulting mixtures for each of the models is as shown
Example. Suppose we represent a reach-grasp task as timoFig. [3. For reproducing the task, instead of the earlier
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Fig. 4. Reproducing the task under the CDS model. The reptimiuc Fig. 6. Change inv affecting the nature of streamlines. Largewill tend
(dashed) is overlaid on the demonstrations for reference.riidel is run for  to bring the system more quickly towards ttg;, £ ) locations seen during
different o values and the flow of the state values in time is depicted by thdemonstrations.

arrows. It is evident that the model tries to track the desfredblue) values
at the current; by reversing the velocity irf; direction. The tracking is
more stringent for largedv.
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Fig. 7. Task reproduction with and without coupling showffaj state space,
[(B) time variation. Dotted lines show the uncoupled task etien. Note the
difference in the directions from which the convergenceuecgdn the two
: : cases. In the coupled execution, convergence is fastgs than ing;. In the
“ Time'steps 7 " " “Time'steps” 7 uncoupled case it is just opposite.
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Fig. 5. Variation of obtained trajectories wiilh and 8. Vertical red line
shows the instant of perturbation when the target is sugidenshed away
along positive$,. direction. Negative velocities are generatedjnin order
to trackff. Speed of retracting is proportional to (left) and amplitude is
proportional tos (right). Definition. A CDS model is globally asymptotically

stable if by starting from any given initial conditions &,,(0),

£5(0) and coupling parameters «, 8 € R the following

evolving under Algorithni 1 is globally stable.

approach presented inl [9] where the system evolves under tbaditions hold:

velocities computed a& f(éx;éf) ‘(é-w;é-f):| we proceed as Jim & (t) =0 (4a)

in Algorithm [I. Fig.[4 shows reproduction of the task in the

(&2, &y) space overlaid on the demonstrations. It clearly shows lim £,() = 0 (4b)
t—o00

that a perturbation ig, creates an effect ié¢, viz. generating
a negative velocity the magnitude of which is tunable usingo prove that the CDS model indeed follows the conditions
the o parameter. This change is brought due to the need[#®fwe use the properties of its individual components. The
tracking the inferred; values i.e&y, at all ;. £ is nothing condition[4& holds true due to the global stability of SEDS.
but the expected value of; given &, as seen during the To investigate the stability of the coupling, we consider

demonstrations. The time variation &f and its variation with

a andg is shown in Figha modulates the speed with which  lim E {ﬁs | (ﬁm)} = E [fs v (tllf?o €m)}

the reaction to perturbation occurs. On the other hand, la hig .

value of 3 increases the amplitude of retracting. Fily. 6 shows = E [is glirgo‘l’ (&m):l (Bya)
the streamlines of this system in order to visualize the ajlob e

behavior of trajectories evolving under the CDS model. The = E |:€s |0} (By Eq.[2)

C_DS model run is compargd to uncoupled task executi.on i.n 0 (By Eq.3) (5)
Fig.[@. It shows the behavior when the same perturbation is

introduced on the abscissa in both coupled and un-coupledh® model which governs the evolution of the coupled
executions. Clearly, the unperturbed varialdg i this case) variable{; is given by

does not react when there is no coupling and also the order of £ —F [é (5 _¢ ) ﬁ}

convergence is not the same as in the demonstrations where s A '

§. converges faster thagy. Taking the limiting values and using Eg. 5 , we get

3) Sability and Convergence: We first define the notion

of global stability in CDS and then prove that the process tliﬁﬂolofs =E [55 |5€s} (6)




which is again globally asymptotically stable due to SEDS8 ar o

hence will drive the stat€; asymptotically to0. However, as 9
seen from Algorithn 11, the multiplierx boosts the velocity Eﬁ: -1
before incrementing the state. It is trivial to see that thies 15k Jg ean Precicted b
. . . i o Variance Predicted by CDS
not affect the global asymptotic behavior of the model sinc ‘ ‘ {=Human recordings during unperturbed demo
. .. T T . . ..
negative definite®£A— = o 2+2— is also negative definite for 04 * e it a0 20 e
a > 0. Why such a condition is required for global stability =2
is proved in detail in/[12]. —02

W
0.1]

\|---Mean Predicted by CDS

IV. EXPERIMENTS AND RESULTS

G0 50 100

. 150
In this section, we describe the experiments for recordir _ Time Steps
human demonstrations under random perturbations. We show
that the CDS model is indeed qualitatively equivalent to the

; ; :Fig. 8. A qualitative comparison of CDS model predictions af thferred
demonstrated human behavior of grasping under perturtmtl(ﬁnger joint angles and the actual recorded human behavide the coupling

and it is suited to handle fast perturbations which typjcall joint angles with the distance from the target. A changéaiget location
need re-planning and are difficult to handle online. From theggers a discontinuous shift in the value [of — 04[] and at the same

experimental data, we identify relationships to infer theef 1me: starts reopening of the fingers.
parameters of the CDS model. Unlike the example presente
in Section[1ll, we used the coupling functioi(.) = ||| ‘
for all the task runs on the robot. We divide the discussiol. |
into subsections describing the experimental setup, gatvne

results/inferences from the experimental data and tastorep [ . .
ductions on the iCub simulator as well as the real robot ti e ' e
validate the modgl (@) (b)

Il
200 250 300

+Subject 1
*Subject 2
+Subject 3

A. Experiments Fig. 9. [(@) shows the linear correlation found between meaml halocity
. . prior to perturbation angs. T, refers to the time at which perturbation is
The experimental setup to record human demonstrations ameduced[{H) shows the linear correlation found betweesnd 5.

create sudden perturbations is shown in Elg. 1. It consists o

two stationary targets and the on-screen target selectmhwh

prompts the human Subject to reach and grasp one of thé\fter all the data is collected, we learn the CDS model from
objects depending on the color shown on the screen. The iGhB data recorded in the unperturbed trials. This servebeas t
simulator runs simultaneously while the human is perfogmirPase model which qualitatively mimics human behavior under
demonstrations in order to establish correspondence for figrturbations. Figll8 shows typical human responses of the
human subject. To start the experiment, one of the targéfger joint angles (only index finger proximal joint is shgwn

is switched on and the subject starts to reach towards t#eder perturbation of the target. The vertical red line raark
corresponding object aiming for a particular grasp depepdithe onset of perturbation and the subsequent dip in the joint
on the object. In random trials (without the knowledge of thangles is due to the re-opening of the fingers when the tesget i
subject), perturbations are introduced by abruptly siviggh suddenly moved away. Note that in all the trials, the fingefs r
the on-screen target selector. Reacting to this change, @ened irrespective of the fact that the aperture of the finge
subject starts to adjust the motion of hand and fingers inrorc the time of perturbation was large enough to accommodate
to reach the other target. The subject forms a grasp arowend e object. This behavior was found common to all subjects.
final target which marks the end of the trial. All the motiort is evident from Fig[B that the finger joint angle inferreg b
data i.e. hand position, orientation and finger joint angges CDS at each time instant is similar to what is exhibited by
recorded throughout the trial at a frequency of 50 Hz. Aftdlumans within the variance of demonstrations.

each trial, the subject is asked to go to a rest posture Wh%r.eCalcuIation of model parameters

a 5 sec. calibration procedure is done for the motion sensors , ,
and data-glove. Trials are run until at least 10 unpertudret As illustrated in sectiori ILB, the parameters and §

10 perturbed trials are obtained. Learning from pertudati '€Present respectively the speed and amplitude of theiseact
enables the estimation of parametarand 3 so that they can (In this case, reopening of fingers) to perturbation. Inseela
be predicted prior to the instant of perturbation at the tofie causes the finger trajectories to follow the inferred (aehir

task reproduction. In addition to this, we also learn the CD¥/ues more strictly, hence, a sharp decrease in the joifit va
model for pinch grasp and populate the set of gragpiote ables is observed. On the other hafidnodulates the inferred

that arbitrarily many grasps can be learned and added to ty@éu_e_ itself. Hence, a manu_ally tuned c;ombmahon of th_el'ewo
set. sufficient to generate any given behavior after the pertioha

However, as shown in Fid.] 9, it was found that there exist
Llvideos are available at http://www.youtube.com/user/ToteRticsVideos ~ correlations which make it possible to predict their valtms


http://www.youtube.com/user/TheRoboticsVideos

&r(1)

(a) Coupled (b) Uncoupled 2]

10 4" -=-Actual (before perturbation)|
Fig. 10. Reach-grasp task executions with and without d¢ogplin the oL e = Iferred (pinch grasp)
coupled executiof (), fingers maintain the correlationsn séering the e i oo
demonstrations which prevents premature finger closure. Theupled 8 o5 0 15 70 75 30 35 70

executior] (B), fingers close early and the grasp fails. Time (s)

Fig. 13. Motion of one finger joint angle under grasp-typetymation.
Demonstrated models for the two grasps recorded during therwumped
demonstrations are shown. The CDS model switches smoothlyebatthe
models when the perturbation occurs.

against gravity so that it starts falling. This requires atfa
adaptation from palm-down to palm-up grasp, while the targe
Fig. 11. Closeup of hand motion post perturbation in coupleit)(and ~keeps on moving. Note that we use the approach presented in
uncoupled (ight) executions. Note the re-opening of fingers leading to brevious work on ball catching by Kim et al:l13] to ensure
successful grasp in the coupled case. . . . .

that the robot intercepts the falling object in its workspac
Here the contribution of the CDS model is to re-adjust the

a human just by observing the motion of the hand prior fagnd orientation and finger curl qnline so that the grasp is
the perturbation. Fid- 9(a) shows there is a linear relatign completed succes_;sfully on the fgllln_g object._The task dpein
between the velocity of the hand prior to perturbation ared tferformed by the iCub in simulation is shown in Figl 12. Note
parameters. It shows that the faster a subject moves towarddat the fingers close proportionately as the distance kestwe
the target, the less they reopen the fingers upon perturbatit€ falling ball and the robot hand decreases, maintairtieg t
Fig.[0(B) shows the linear correlation between the parameté?o_”el_a“ons seen during the demonstrations. The timesetp
a and B. It shows that a faster reopening of the fingers #S indicated on the figure in seconds. N

accompanied by a larger amount of reopening. ConsequentlyVVe perform another task showing the ability of the CDS

both the parameters and 8 can be predicted based on thélcdel to adapt between pinch and power grasps. We learn
motion of the hand prior to perturbation. Hence, they no eangPinch and power grasps from demonstrations as shown previ-
need to be specified manually in Algoritimh 1. ously and change the target object while the robot goes &r th

pinch grasp. Fig_13 shows the motion of robot’s index finger

C. Validation proximal joint. It is evident that the hand aperture decesas
Jickly when the robot aims for the pinch grasp but after
switch, the robot smoothly switches from following the

We validate the CDS model by executing the learned gra:

ing strategies on the iCub robot. First we show that graspi . X
under perturbations using the uncoupled approach fails dRf8ch-grasp model requiring smaller hand aperture (irgefa

to lack of knowledge of the correlations between the read@int value) to the power grasp model which requires a larger
and grasp sub-systems. Fig] 10 shows such comparison. fRgrture (smaller_Jomt _value). _The model can also_ be seen to
robot starts moving towards a fixed target which is sudderfy® robustly handling different instants of perturbation.

shifted to the right just before the completion of the taskhie
uncoupled case (Fif. I0{b) ), the fingers close too early laed t
task fails. In the coupled case (F[g. I0(a)), the finger nmtio In this paper we presented a model for encoding and repro-
is delayed due to the coupling and the fingers close accordihgcing grasping strategies which is capable of handling fas
to the correlations learned during the demonstrations.[Elg real-time perturbations. Biological inspiration was takiey
clearly shows the re-opening of fingers. observing the correlations between arm and finger motion dur
Next, we show that the presented scheme also enables onilirgehuman experiments of reach-to-grasp tasks under sudden
adaptation against fast perturbations of grasp-type. \&@mle unpredicted perturbations. We showed that once the gmspin
power grasps in palm-up and palm-down configurations efrategies are taught offline by a human demonstrations, the
the hand from unperturbed demonstrations and populate thedel is able to reliably switch between those under very fas
set of graspsy with them. In the reproduction phase, theerturbations. Re-opening of fingers under perturbatios ha
robot starts moving towards the target aiming for the palneen found to be present in all human trials and is shown to be
down configuration grasp. After a certain period, the obigct critical to the success of reach-grasp tasks. Our moderessu
made to reappear at another location, however not supportieid behavior even in the presence of arbitrary perturbatio

V. CONCLUSION



Fig. 12. Fast adaptation under perturbation from palm-dawpalm-up power grasp. Torso is included in the inverse kines&b increase the workspace
of the robot so as to highlight the effectiveness of the modeldapting the grasping motion under very fast perturbations
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